
Octree-Based Repetitive Pose Detection of Large-Scale Cyclic Environments

Yibo Wang, Hongbiao Zhu, Weidong Wang*

State Key Laboratory of Robotics and System

Harbin Institute of Technology (HIT)

Harbin, China

wyb3_14@163.com, ibiaozi@163.com, wangweidong@hit.edu.cn

Abstract—Aiming at the time-consuming problem of repetitive

detection for mobile robots in large-scale cyclic environments,

this paper presents an octree-based repetitive pose detection

approach which can reduce the detection time effectively.

Compared with the traditional graph-based detection method,

the novelty of our algorithm lies in the high accuracy, in

particular, consuming time does not rise with the expansion of

the poses storage. Based on the octree, the 3D space of position

is segmented and converted into a binary format for storage or

search. The orientations are stored at the leaf nodes of the

octree, and the similarity of them is determined by the vectors

matching method. The proposed algorithm is evaluated using

real-world experiments and different simulated datasets

including KITTI and Oxford, the evaluation results indicate

the superior performance in terms of efficiency and accuracy

using our algorithm in the large-scale cyclic environments.

Keywords-octree; pose-detection; mobile robot;

I. INTRODUCTION

Repetitive pose (position plus orientation) detection is
used to detect whether the same pose have been experienced
in the past scenes for mobile robot in this paper, it is widely
used in various applications including the situations that a
robot moves continuously in a cyclic environment [1] and
the scenes that multiple robots [2] detect the repetitive poses
by sharing information with each other. On the other side,
robots can choose to move away from the repetitive poses or
close to the repetitions, the first case often occurs in the
unknown environment exploration tasks [3] of mobile robots
aiming to reduce the repeated exploring areas and complete
the tasks in the shortest time while ensuring the integrity of
exploration, in that case, information of repetitive poses can
be used as an important evaluation criterion, the repetitions
can inevitably lead to the overlap of the exploration areas,
while the explorations can be implemented faster by moving
far away from the repetitions; the second case can occur in
trajectory-tracking tasks [5], in that case, robots can record
the trajectories optimized by the control algorithms and then
a faster operation can be achieved by retracing trajectories
including information of poses without recalculation. Loop-
closure detection [6], an important part of backend
optimization for SLAM, is a typical process of repetitive
pose detection, for instance, the odometry based loop-closure
detection [1] proposed by Hahnel D et al, builds parametric
model of the odometry error through the experiments and
confirms loop-closure by comparing the relative poses.

The small-scale pose detection can be simply realized by
container storage and traversal, so it is often ignored by the
researchers. But with the increase of storage which often
occurs in large-scale cyclic environments, consuming time
will also increase obviously and can’t be ignored anymore.

The existing methods of repetitive pose detection is
mainly implemented by graph structure. In Pose-Graph [7-9],
vertices are used to represent robot poses, and edges are used
to estimate the relative motions between vertices, it is a pity
that searching for poses is a time-consuming process by the
way of traversal in the Pose-Graph, whether the depth first
search or the breadth first search, and the process of
searching the specified data has a certain randomness
according to the initial value.

Octree can realize the segmentation of 3D space, its
typical application is OctoMap [10,11], a well-known 3D
volumetric map, which is generally applied to the tasks of
navigation [12]. In this paper, an octree-based repetitive
pose detection method is proposed, which is faster than the
detection method based on graph structure especially in the
large-scale environments. In particular, consuming time
does not rise with the expansion of the storage of poses
using our algorithm. The number of position search times is
independent of the amount of storage and the maximum
number of times per search is d equaling to the depth of
octree set by the user. The orientation detection is executed
after position search, the required execution times are

determined by the angle threshold th set by the user and the

quantity of orientations that have been stored, in this way,
the number of orientations to be searched is limited to a
certain extent to ensure the high efficiency of algorithm.

In the following sections we will explain the proposed
repetitive pose detection algorithm in more detail and then
evaluate our approach using real-world experiments and
different simulated datasets including KITTI and Oxford.

II. PROPOSED ALGORITHM

The proposed robot repetitive pose detection algorithm
includes the handling of position and orientation, regardless
of the search or the storage procedure, the priority of the
position information is higher than the orientation
information, that is, the position information is searched and
stored firstly, and then the orientation, which is determined
by the algorithm structure: the storage and search of position
are implemented based on octree, it is necessary to construct
or search the complete tree structure firstly, and then store
the orientation at the leaf nodes of octree or use the vectors
comparison algorithm to compare the orientations stored at

the leaf nodes. We also set the adjustable storage intervals
for pose to improve the practicability of the algorithm, in
which the storage interval of position is expressed by the
resolution r of the octree, and the orientation interval is

expressed by the angle threshold th of vectors.

The priority of the search is higher than the storage in the
algorithm, that is, the search first and then the storage. After
the acquirement of information to be searched, the algorithm
searches for the information in the stored structure of octree,
and determines whether to store the position or orientation
into the octree according to the search result:

• Nothing will be updated if both the position and
orientation to be searched are within the interval set
by user.

• If the position information is not found, the robot can
update the to be searched pose directly without
matching the orientation information anymore.

• If the position is searched successfully but the to be
searched orientation is not near the stored ones, only
the orientation will be updated.

The main steps of proposed algorithm are described in
Algorithm 1.

Algorithm 1. Repetitive pose storage and detection

1: Initialize parameters; // (e.g., r, th , etc.)

2: Repeat //main loop
3: get the 3D position data; // type: double
4: convert position data into binary;
5: combine binary data as shown in Fig. 2;
6: for i=1, …, d do
7: search the ith combined binary;
8: if (Search Failed) then
9: // failed to search position;
10: store pose;
11: return (no position detected);
12: end
13: end

14: get the rotation matrix W
RR ;

15: get s
WV using Eq. (1) and Eq. (2);

16: num = 0;// num: number of similar orientations
17: for i=1, …, n do

18: compare s
WV and i

WV using Eq. (3);

19: if (th ) then

20: num++;
21: end
22: end
23: if (num == 0)
24: // failed to search orientation;
25: store the orientation only;
26: return (no orientation detected);
27: else
28: return (pose detected);
29: end
30: Until be stopped by user;

A. Position Storage and Search

The process of position storage and search is
implemented based on octree, the resolution of octree (r)
represents the accuracy of stored positions, and octree depth
(d) represents the number of spatial segmentations. In the
process, the robot need to get the 3D coordinates of position
firstly, and then transform the 3D data (x, y, z) into three sets
of binary numbers respectively, the number of binary digits

in each set is the same as the octree depth and the high digits
are complemented by 0, then the segmentation of three-
dimensional space can be described by binary combinations,
Figure 1. shows data storage format and the way of binary
combination, in each spatial segmentation, each set of
binary numbers provides only one bit of binary data (0 or 1)
in sequence, and is spliced into three-digit binary numbers
in the order of (z, y, x), corresponding to 0-7 in decimal. The
above process can be understood from different aspects:
from the geometric point of view, it divides the three
dimensions of space and forms eight independent sub-
regions (refer to Figure 2.), the combinations of binary
from high digits to low digits can represent the coarse to
fine segmentation process of space; from the perspective of
tree structure, it corresponds to the process of spreading
from the root node to the leaf node, and when the number of
subdivisions is equal to the set tree depth, it is considered
that the entire subdivision process of the space is completed,
at this time the minimum region length corresponds to the
resolution of the octree. We set the tree depth to d and the
resolution to r, then each dimension can represent the

distance of r 2d .

.0 0 11 1 11 0 0 1 0 0

001 111 100 010. . .

1 7 4 2. . .

Figure 1. Data storage format and binary combination.

1

1
1

0
0

0

Y

0 1

1

0
0

1

X

Z

O

X

Y

Z

O

Figure 2. Space segmentation using octree. It shows the correspondence

between three dimensional coordinates and binary, the space is subdivided

2 times corresponding to the first 2 times binary combination in Figure1.

Figure 3. illustrates the structure of octree, in which
layers are connected by pointers, and the pointers point from
the root node to the next layer until the leaf nodes. In the
initial state, each node in the octree is set to NULL, and the

3 4 5 6 7210

0

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

4

.

.

.

Figure 3. The structure of the octree. Position data is stored from level 1

(root node) to level d (leaf node), and the orientations are hanged up under

the leaf nodes after the storage of position. The red numbers correspond to

the decimal result by combining binary shown in Figure 1.

position storage process is to update the NULL of each layer
0-7 position to True according to the result of binary
combinations.

The position search is the reverse process of the stored
procedure. The new information of position needs to be
converted into binary numbers and combined into 0-7 in the
same manner as the storage mentioned above, and then
compare the decimal digit with position data stored in the
octree along the direction of pointers, when all the data is
searched, it is judged that the searched position had been
reached before and will not be stored one more time.
Otherwise, the searched position is determined to be a new
one, and it needs to be stored in the octree for later search.

B. Orientation Storage and Search

The orientations are stored in containers in the form of
vectors, as shown in Figure 3. we set the pointer pointing
from the leaf node to the orientations, which is used to
contact the position and orientation information. This setting
can realize a one-to-many mapping of position and
orientation, that is, one position can correspond to multiple
orientations, which is consistent with common sense. Sparse
orientation storage can be achieved by setting the storage

interval (angle threshold th) and comparing the new vector

to the stored vectors. Therefore, the number of orientations
in the containers is limited, and the larger the angle threshold,
the smaller the maximum number of orientations stored in
the containers, in this way, the number of orientation
comparisons can be effectively limited according to demand.

O
Y

Z

Z2

V2

Y2

X2

O2

θ

Z1

O1
Y1

X1

V1O
Y

Z

V1

X2

Y2

O1(O2)

V2

X1
Y1

Z1(Z2)

O
Y

Z

Z2

Z1

O1

X1

V1

Y1

O2
V2

Y2X2

O1(O2)

V1 V2

O1(O2)

V1(V2)

(a) (b) (c)

X X X

Figure 4. The process of vectors matching. The black coordinate system

represents the world coordinate system, and the remaining two coordinate

systems represent robot coordinate systems. (a) shows vectors matching

when positions coincide. (b)(c) show vectors matching when positions

coincidence incompletely, the angle between two vectors is expressed as

θ，and θ=0 when vectors are parallel or overlapped as shown in (c).

Orientation search is implemented by matching the angle
between two vectors. Since we use the octree resolution as
the position storage interval, the defined ‘repetitive position’
is not strictly coincident, and the resolution can be treated as
the permissible position error. Using vectors can ensure that
the orientation search results will not be affected by the
position error. Figure 4. illustrates the process of vectors
matching. We set the robot coordinate system to {R}, and the
world coordinate system is set to {W}, which coincides with
the robot coordinate system at the initial position and
remains unchanged, then bind the unchanging virtual points

on {R}, expressed as  0 0 0 0
TRP = ，， and  1 1,1,1

TRP = , they

form a fixed vector in the robot coordinate system, expressed

as  1,1,1
T

=RV .

The homogeneous transformation matrix converted from
the robot coordinate system to the world coordinate system:

0 1

W W
R RW

R

R p
T

 
=  
 

 (1)

where W
RR is the rotation matrix, and W

Rp is the translation

vector.

The vector RV in the world coordinate system can be

expressed as:

 1 0
W R W R W
R R RT P T P R= − =W RV V (2)

where WV is the transformed robot pose needs to be stored in

our algorithm. The set of the stored vectors is expressed as:

 , , , , ,= 1 2 i n
W W W WV V V V V , where  1,i n , and n is the

number of membersV .

The orientation search is the process of comparing the
search vector with the stored vectors, and obtained angle θ is:

 arccos


=


s i
W W

s i
W W

V V

V V
 (3)

It is significant to define the so-called ‘similarity’ in the
process of comparing vectors, we use a user setting

parameter th (angle threshold) to represent the vector

similarity, if th  the orientation is judged to be a repetitive

orientation, since the position information had been searched
in the previous work, the searched pose can be considered as
a repetitive pose and will not be stored one more time.
Otherwise, although the position is repetitive, the orientation
information is new to the octree and needs to be stored.

III. EXPERIMENTS

In the section, we implement the real-world experiments
based on Robot Operating System (ROS) and use the
datasets of KITTI and Oxford to further evaluate the effect

of the proposed repetitive pose detection algorithm in the
large-scale environments.

Figure 5. The mobile robot experimental platform.

Figure 6. Experimental trajectory and time consuming. (a) shows partly

coincident experimental trajectories of the 4 loops. (b) shows consumed

time of position (green) and orientation (blue) detection in every loop.

In order to verify the proposed algorithm, it is necessary
to provide the robot pose information firstly, which includes
the information of position and orientation. Figure 5. shows
our mobile robot experimental platform. In the real-world
experiments, the positioning function is realized by data
fusion between GNSS and IMU based on EKF. The GNSS
is based on RTK (Real-Time Kinematic) technology, which
can realize centimeter-level positioning accuracy through
differential signal processing between base station and
mobile terminal. The IMU uses a nine-axis fusion algorithm
of gyroscope, accelerometer and magnetometer to provide
the motion orientation of mobile robot. This positioning
method can eliminate the accumulated error in a large-scale
environment while ensuring high-precision positioning.

Figure 6(a). shows the experimental trajectory of 4 loops
for repetitive pose detection using our mobile robot, we
recorded the consumed time data of the robot pose detection
as shown in Figure 6(b). and TABLE I. , according to the
experimental data, consumed time of per detection is
maintained at the range of 1.0×10-6s-1.0×10-4s, the robot

TABLE I. CONSUMED TIME (MOBILE ROBOT)

Average

time(s)
Orientation Position Pose

Standard

deviation

 3.7806e-05 9.6985e-07 3.8776e-05 3.0998e-05

Loop 1 3.3122e-05 6.5144e-07 3.3773e-05 1.7558e-05

Loop 2 3.9107e-05 9.7997e-07 4.0087e-05 2.1251e-05

Loop 3 4.4731e-05 1.2117e-07 4.5943e-05 2.2081e-05

Loop 4 3.4265e-05 1.0363e-07 3.5301e-05 1.8273e-05

TABLE II. UPDATE NUMBER (MOBILE ROBOT)

 4 Loops (r: 0.2m, th :15°, d:16)

1 2 3 4

Update

number

197 19 10 9

updates the storage after the detection of different pose,
TABLE II. illustrates the update numbers in 4 loops (r:

0.2m, th :15°, d:16), the first loop indicates the initialization

process of the robot reaching the unknown environment for
the first time, and the number of updates is relatively large,
the remaining loops can detect the repetitive poses stored
before but it is difficult to ensure that running trajectories are
completely coincident with them, which leads to a small
number of updates.

In order to verify the performance of the proposed
algorithm in a large-scale environment, we used the poses
information of KITTI dataset and Oxford dataset, which
contain 1592 and 126362 different pose points respectively.
Comparing to the above-mentioned mobile robot
experiments, the datasets provide more poses and a larger
range of motion. The trajectories are shown as Figure
7(a)(c). , we also set the loop number to 4 in this part.
Figure 7(b)(d). and TABLE III. show us the consumed time
per detection and its variation trend using two datasets.
Comparing with the KITTI dataset, the Oxford dataset
provide more poses to be searched and stored, but the time
spent on detection remains stable and shows no trend of
increase, that is, the time of detection does not increase with
the amount of poses storage, which demonstrate the
efficiency of the algorithm in a large-scale cyclic
environment.

Figure 7. Trajectory and consumed time using KITTI and Oxford dataset.

The first loop in the experiment is used to traverse and
store all the poses provided by datasets, and it is different
from the previous real-world experiments that the other
three loops use the same poses data as the first loop, so their
trajectories coincide completely. TABLE IV. shows that
except for a certain number of updates in the first loop, the
number of updates in the remaining loops is 0, which means

the accuracy of the proposed repetitive pose detection
algorithm is 100%.

The KITTI dataset has a low density of poses, while the
data density in the Oxford dataset is large and there are
some repetitive poses in the trajectory. We gradually

increased the detection density by setting parameters (r, th ,

d) and detected the number of pose update as shown in
TABLE IV. According to the analysis, the increase of the
detection density has a certain effect on the experiments
using Oxford dataset which is with a higher pose density, it
leads to an increase in the number of pose updates,
confirming the practicability of the algorithm parameters
which can be set as need by user.

TABLE III. CONSUMED TIME (KITTI & OXFORD)

Average
time(s) Orientation Position Pose

Standard

deviation

KITTI
(1592)

 2.4639e-05 6.6793e-07 2.5306e-05 1.2208e-05

1 2.4556e-05 6.9323e-07 2.5249e-05 1.1488e-05

2 2.5091e-05 6.7145e-07 2.5762e-05 1.2133e-05

3 2.5104e-05 6.5908e-07 2.5764e-05 1.3525e-05

4 2.3803e-05 6.4794e-07 2.4451e-05 1.1499e-05

Oxford

(126362)

 1.7462e-05 2.0961e-07 1.7672e-05 5.2048e-06

1 1.7422e-05 2.0268e-07 1.7625e-05 5.5866e-06

2 1.7698e-05 2.2618e-07 1.7924e-05 7.0578e-06

3 1.7440e-05 2.0281e-07 1.7643e-05 5.6958e-06

4 1.7288e-05 2.0678e-07 1.7495e-05 5.6867e-06

TABLE IV. UPDATE NUMBER (KITTI & OXFORD)

Update
number Loop

Parameters (r, th , d)

(0.1,10,16) (0.05,5,16) (0.02,2,16)

KITTI
(1592)

1 1592 1592 1592

2-4 0 0 0

Oxford
(126362)

1 70947 79700 85291

2-4 0 0 0

IV. CONCLUSIONS

In this paper, we proposed an octree-based repetitive
pose detection method, which addresses the problem of
large time-consuming in the pose detection tasks, comparing
to the traditional graph-based method, our approach can
perform better in a large-scale cyclic environment. The
major advantage of our approach is that while ensuring the
high accuracy, the detection time does not rise with the
increase of the number of poses storage, and it is
conceptually straightforward and easy to be implemented.
The position detection is mainly realized based on octree,
and the orientation detection is implemented by vectors
comparison on the basis of octree structure. In addition, we
set up the adjustable octree resolution and angle threshold
which can be used for sparse pose storage and search
according to the requirement, it increases the practicability
of the algorithm. In the experimental part, the GNSS-IMU
framework is used to provide the pose data of outdoor

mobile robot without error accumulation, which verifies the
feasibility of our approach. Then the KITTI dataset and
Oxford dataset were used to further complete the larger-
scale experimental verification, the results of the
experiments show that the average consuming time of our
pose detection method is less than 1.0×10-4s, and the
repetitive detection accuracy is up to 100%.

The proposed algorithm is a basic method. For future
work, we will pay more attention to the application of our
approach, for instance, the exploration of unknown
environment using mobile robots, it can be foreseen that the
proposed octree-based repetitive pose detection algorithm
can improve the exploration efficiency and complete the
exploration tasks more quickly.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (61773141).

REFERENCES

[1] Hahnel D, Burgard W, Fox D, et al. An efficient fastSLAM algorithm
for generating maps of large-scale cyclic environments from raw laser
range measurements[C]//Ieee/rsj International Conference on
Intelligent Robots and Systems. IEEE, 2003:206-211 vol.1.

[2] Amigoni F, Banfi J, Basilico N. Multirobot Exploration of
Communication-Restricted Environments: A Survey[J]. IEEE
Intelligent Systems, 2018, 32(6):48-57.

[3] Charrow B, Liu S, Kumar V, et al. Information-theoretic mapping
using Cauchy-Schwarz Quadratic Mutual Information[C]// IEEE
International Conference on Robotics and Automation. IEEE,
2014:4791-4798.

[4] Charrow B, Kahn G, Patil S, et al. Information-Theoretic Planning
with Trajectory Optimization for Dense 3D Mapping[C]// Robotics:
Science and Systems. 2015.

[5] Alessandretti A, Aguiar A P, Jones C N. Trajectory-tracking and
path-following controllers for constrained underactuated vehicles
using Model Predictive Control[C]// Control Conference. EUCA,
2013:1371-1376.

[6] Angeli A, Filliat D, Doncieux S, et al. Fast and Incremental Method
for Loop-Closure Detection Using Bags of Visual Words[J]. IEEE
Transactions on Robotics, 2008, 24(5):1027-1037.

[7] Dubbelman G, Browning B. COP-SLAM: Closed-Form Online Pose-
Chain Optimization for Visual SLAM[J]. IEEE Transactions on
Robotics, 2015, 31(5):1194-1213.

[8] Lee D, Myung H. Solution to the SLAM problem in low dynamic
environments using a pose graph and an RGB-D sensor[J]. Sensors,
2014, 14(7):12467.

[9] Latif Y, Cadena C, Neira J. Robust loop closing over time for pose
graph SLAM[J]. International Journal of Robotics Research, 2013,
32(14):1611-1626.

[10] Wurm K M, Hornung A, Bennewitz M, et al. OctoMap: A
probabilistic, flexible, and compact 3D map representation for robotic
systems[C]// Proc. of the ICRA Workshop on Best Practice in 3D
Perception and Modeling for Mobile Manipulation. 2010.

[11] Hornung A, Kai M W, Bennewitz M, et al. OctoMap: An efficient
probabilistic 3D mapping framework based on octrees[J].
Autonomous Robots, 2013, 34(3):189-206.

[12] Hornung A, Phillips M, Jones E G, et al. Navigation in three-
dimensional cluttered environments for mobile manipulation[C]//
IEEE International Conference on Robotics and Automation. IEEE,
2012:423-429.

