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Abstract—Aiming at the time-consuming problem of repetitive 

detection for mobile robots in large-scale cyclic environments, 

this paper presents an octree-based repetitive pose detection 

approach which can reduce the detection time effectively. 

Compared with the traditional graph-based detection method, 

the novelty of our algorithm lies in the high accuracy, in 

particular, consuming time does not rise with the expansion of 

the poses storage. Based on the octree, the 3D space of position 

is segmented and converted into a binary format for storage or 

search. The orientations are stored at the leaf nodes of the 

octree, and the similarity of them is determined by the vectors 

matching method. The proposed algorithm is evaluated using 

real-world experiments and different simulated datasets 

including KITTI and Oxford, the evaluation results indicate 

the superior performance in terms of efficiency and accuracy 

using our algorithm in the large-scale cyclic environments. 
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I.  INTRODUCTION  

Repetitive pose (position plus orientation) detection is 
used to detect whether the same pose have been experienced 
in the past scenes for mobile robot in this paper, it is widely 
used in various applications including the situations that a 
robot moves continuously in a cyclic environment [1] and 
the scenes that multiple robots [2] detect the repetitive poses 
by sharing information with each other. On the other side, 
robots can choose to move away from the repetitive poses or 
close to the repetitions, the first case often occurs in the 
unknown environment exploration tasks [3] of mobile robots 
aiming to reduce the repeated exploring areas and complete 
the tasks in the shortest time while ensuring the integrity of 
exploration, in that case, information of repetitive poses can 
be used as an important evaluation criterion, the repetitions 
can inevitably lead to the overlap of the exploration areas, 
while the explorations can be implemented faster by moving 
far away from the repetitions; the second case can occur in 
trajectory-tracking tasks [5], in that case, robots can record 
the trajectories optimized by the control algorithms and then 
a faster operation can be achieved by retracing trajectories 
including information of poses without recalculation. Loop-
closure detection [6], an important part of backend 
optimization for SLAM, is a typical process of repetitive 
pose detection, for instance, the odometry based loop-closure 
detection [1] proposed by Hahnel D et al, builds parametric 
model of the odometry error through the experiments and 
confirms loop-closure by comparing the relative poses.  

The small-scale pose detection can be simply realized by 
container storage and traversal, so it is often ignored by the 
researchers. But with the increase of storage which often 
occurs in large-scale cyclic environments, consuming time 
will also increase obviously and can’t be ignored anymore. 

The existing methods of repetitive pose detection is 
mainly implemented by graph structure. In Pose-Graph [7-9], 
vertices are used to represent robot poses, and edges are used 
to estimate the relative motions between vertices, it is a pity 
that searching for poses is a time-consuming process by the 
way of traversal in the Pose-Graph, whether the depth first 
search or the breadth first search, and the process of 
searching the specified data has a certain randomness 
according to the initial value. 

Octree can realize the segmentation of 3D space, its 
typical application is OctoMap [10,11], a well-known 3D 
volumetric map, which is generally applied to the tasks of 
navigation [12]. In this paper, an octree-based repetitive 
pose detection method is proposed, which is faster than the 
detection method based on graph structure especially in the 
large-scale environments. In particular, consuming time 
does not rise with the expansion of the storage of poses 
using our algorithm. The number of position search times is 
independent of the amount of storage and the maximum 
number of times per search is d equaling to the depth of 
octree set by the user. The orientation detection is executed 
after position search, the required execution times are 

determined by the angle threshold th set by the user and the 

quantity of orientations that have been stored, in this way, 
the number of orientations to be searched is limited to a 
certain extent to ensure the high efficiency of algorithm. 

In the following sections we will explain the proposed 
repetitive pose detection algorithm in more detail and then 
evaluate our approach using real-world experiments and 
different simulated datasets including KITTI and Oxford. 

II. PROPOSED ALGORITHM 

The proposed robot repetitive pose detection algorithm 
includes the handling of position and orientation, regardless 
of the search or the storage procedure, the priority of the 
position information is higher than the orientation 
information, that is, the position information is searched and 
stored firstly, and then the orientation, which is determined 
by the algorithm structure: the storage and search of position 
are implemented based on octree, it is necessary to construct 
or search the complete tree structure firstly, and then store 
the orientation at the leaf nodes of octree or use the vectors 
comparison algorithm to compare the orientations stored at 



the leaf nodes. We also set the adjustable storage intervals 
for pose to improve the practicability of the algorithm, in 
which the storage interval of position is expressed by the 
resolution r of the octree, and the orientation interval is 

expressed by the angle threshold th of vectors. 

The priority of the search is higher than the storage in the 
algorithm, that is, the search first and then the storage. After 
the acquirement of information to be searched, the algorithm 
searches for the information in the stored structure of octree, 
and determines whether to store the position or orientation 
into the octree according to the search result:  

• Nothing will be updated if both the position and 
orientation to be searched are within the interval set 
by user. 

• If the position information is not found, the robot can 
update the to be searched pose directly without 
matching the orientation information anymore. 

• If the position is searched successfully but the to be 
searched orientation is not near the stored ones, only 
the orientation will be updated. 

The main steps of proposed algorithm are described in 
Algorithm 1. 

Algorithm 1. Repetitive pose storage and detection 

1:  Initialize parameters; // (e.g., r, th , etc.) 

2:  Repeat //main loop 
3:      get the 3D position data; // type: double 
4:      convert position data into binary; 
5:      combine binary data as shown in Fig. 2; 
6:      for i=1, …, d do 
7:          search the ith combined binary; 
8:          if (Search Failed) then 
9:              // failed to search position; 
10:             store pose; 
11:             return (no position detected); 
12:         end 
13:     end 

14:     get the rotation matrix W
RR ;  

15:     get s
WV using Eq. (1) and Eq. (2);  

16:     num = 0;// num: number of similar orientations 
17:     for i=1, …, n do 

18:         compare s
WV and i

WV using Eq. (3); 

19:         if ( th  ) then 

20:             num++; 
21:         end 
22:     end 
23:     if (num == 0) 
24:         // failed to search orientation; 
25:         store the orientation only; 
26:         return (no orientation detected); 
27:     else 
28:         return (pose detected); 
29:     end 
30:  Until be stopped by user; 

A. Position Storage and Search 

The process of position storage and search is 
implemented based on octree, the resolution of octree (r) 
represents the accuracy of stored positions, and octree depth 
(d) represents the number of spatial segmentations. In the 
process, the robot need to get the 3D coordinates of position 
firstly, and then transform the 3D data (x, y, z) into three sets 
of binary numbers respectively, the number of binary digits 

in each set is the same as the octree depth and the high digits 
are complemented by 0, then the segmentation of three-
dimensional space can be described by binary combinations, 
Figure 1. shows data storage format and the way of binary 
combination, in each spatial segmentation, each set of 
binary numbers provides only one bit of binary data (0 or 1) 
in sequence, and is spliced into three-digit binary numbers 
in the order of (z, y, x), corresponding to 0-7 in decimal. The 
above process can be understood from different aspects: 
from the geometric point of view, it divides the three 
dimensions of space and forms eight independent sub-
regions (refer to Figure 2. ), the combinations of binary 
from high digits to low digits can represent the coarse to 
fine segmentation process of space; from the perspective of 
tree structure, it corresponds to the process of spreading 
from the root node to the leaf node, and when the number of 
subdivisions is equal to the set tree depth, it is considered 
that the entire subdivision process of the space is completed, 
at this time the minimum region length corresponds to the 
resolution of the octree. We set the tree depth to d and the 
resolution to r, then each dimension can represent the 

distance of r 2d . 
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Figure 1.  Data storage format and binary combination. 
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Figure 2.  Space segmentation using octree. It shows the correspondence 

between three dimensional coordinates and binary, the space is subdivided 

2 times corresponding to the first 2 times binary combination in Figure1. 

Figure 3. illustrates the structure of octree, in which 
layers are connected by pointers, and the pointers point from 
the root node to the next layer until the leaf nodes. In the 
initial state, each node in the octree is set to NULL, and the  
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Figure 3.  The structure of the octree. Position data is stored from level 1 

(root node) to level d (leaf node), and the orientations are hanged up under 

the leaf nodes after the storage of position. The red numbers correspond to 

the decimal result by combining binary shown in Figure 1. 

position storage process is to update the NULL of each layer 
0-7 position to True according to the result of binary 
combinations. 

The position search is the reverse process of the stored 
procedure. The new information of position needs to be 
converted into binary numbers and combined into 0-7 in the 
same manner as the storage mentioned above, and then 
compare the decimal digit with position data stored in the 
octree along the direction of pointers, when all the data is 
searched, it is judged that the searched position had been 
reached before and will not be stored one more time. 
Otherwise, the searched position is determined to be a new 
one, and it needs to be stored in the octree for later search. 

B. Orientation Storage and Search 

The orientations are stored in containers in the form of 
vectors, as shown in Figure 3. we set the pointer pointing 
from the leaf node to the orientations, which is used to 
contact the position and orientation information. This setting 
can realize a one-to-many mapping of position and 
orientation, that is, one position can correspond to multiple 
orientations, which is consistent with common sense. Sparse 
orientation storage can be achieved by setting the storage  

interval (angle threshold th ) and comparing the new vector 

to the stored vectors. Therefore, the number of orientations 
in the containers is limited, and the larger the angle threshold, 
the smaller the maximum number of orientations stored in 
the containers, in this way, the number of orientation 
comparisons can be effectively limited according to demand. 
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Figure 4.  The process of vectors matching. The black coordinate system 

represents the world coordinate system, and the remaining two coordinate 

systems represent robot coordinate systems. (a) shows vectors matching 

when positions coincide. (b)(c) show vectors matching when positions 

coincidence incompletely, the angle between two vectors is expressed as 

θ，and θ=0 when vectors are parallel or overlapped as shown in (c). 

Orientation search is implemented by matching the angle 
between two vectors. Since we use the octree resolution as 
the position storage interval, the defined ‘repetitive position’ 
is not strictly coincident, and the resolution can be treated as 
the permissible position error. Using vectors can ensure that 
the orientation search results will not be affected by the 
position error. Figure 4. illustrates the process of vectors 
matching. We set the robot coordinate system to {R}, and the 
world coordinate system is set to {W}, which coincides with 
the robot coordinate system at the initial position and 
remains unchanged, then bind the unchanging virtual points 

on {R}, expressed as  0 0 0 0
TRP = ，， and  1 1,1,1

TRP = , they 

form a fixed vector in the robot coordinate system, expressed 

as  1,1,1
T

=RV . 

The homogeneous transformation matrix converted from 
the robot coordinate system to the world coordinate system: 

 
0 1

W W
R RW

R

R p
T

 
=  
 

   (1) 

where W
RR is the rotation matrix, and W

Rp is the translation 

vector. 

The vector RV in the world coordinate system can be 

expressed as: 

 1 0
W R W R W
R R RT P T P R= − =W RV V   (2) 

where WV is the transformed robot pose needs to be stored in 

our algorithm. The set of the stored vectors is expressed as: 

 , , , , ,= 1 2 i n
W W W WV V V V V , where  1,i n , and n is the 

number of membersV . 

The orientation search is the process of comparing the 
search vector with the stored vectors, and obtained angle θ is: 

 arccos


=


s i
W W

s i
W W

V V

V V
  (3) 

It is significant to define the so-called ‘similarity’ in the 
process of comparing vectors, we use a user setting 

parameter th (angle threshold) to represent the vector 

similarity, if th  the orientation is judged to be a repetitive 

orientation, since the position information had been searched 
in the previous work, the searched pose can be considered as 
a repetitive pose and will not be stored one more time. 
Otherwise, although the position is repetitive, the orientation 
information is new to the octree and needs to be stored. 

III. EXPERIMENTS 

In the section, we implement the real-world experiments 
based on Robot Operating System (ROS) and use the 
datasets of KITTI and Oxford to further evaluate the effect 



of the proposed repetitive pose detection algorithm in the 
large-scale environments. 

 

Figure 5.  The mobile robot experimental platform. 

 

Figure 6.  Experimental trajectory and time consuming. (a) shows partly 

coincident experimental trajectories of the 4 loops. (b) shows consumed 

time of position (green) and orientation (blue) detection in every loop. 

In order to verify the proposed algorithm, it is necessary 
to provide the robot pose information firstly, which includes 
the information of position and orientation. Figure 5. shows 
our mobile robot experimental platform. In the real-world 
experiments, the positioning function is realized by data 
fusion between GNSS and IMU based on EKF. The GNSS 
is based on RTK (Real-Time Kinematic) technology, which 
can realize centimeter-level positioning accuracy through 
differential signal processing between base station and 
mobile terminal. The IMU uses a nine-axis fusion algorithm 
of gyroscope, accelerometer and magnetometer to provide 
the motion orientation of mobile robot. This positioning 
method can eliminate the accumulated error in a large-scale 
environment while ensuring high-precision positioning. 

Figure 6(a). shows the experimental trajectory of 4 loops 
for repetitive pose detection using our mobile robot, we 
recorded the consumed time data of the robot pose detection 
as shown in Figure 6(b). and TABLE I. , according to the 
experimental data, consumed time of per detection is 
maintained at the range of 1.0×10-6s-1.0×10-4s, the robot  

TABLE I.  CONSUMED TIME (MOBILE ROBOT)  

Average 

time(s) 
Orientation Position Pose 

Standard 

deviation 

 3.7806e-05 9.6985e-07 3.8776e-05 3.0998e-05 

Loop 1 3.3122e-05 6.5144e-07 3.3773e-05 1.7558e-05 

Loop 2 3.9107e-05 9.7997e-07 4.0087e-05 2.1251e-05 

Loop 3 4.4731e-05 1.2117e-07 4.5943e-05 2.2081e-05 

Loop 4 3.4265e-05 1.0363e-07 3.5301e-05 1.8273e-05 

 

TABLE II.  UPDATE NUMBER (MOBILE ROBOT)  

 
 4 Loops (r: 0.2m, th :15°, d:16) 

1 2 3 4 

Update 

number 

197 19 10 9 

 
updates the storage after the detection of different pose, 
TABLE II. illustrates the update numbers in 4 loops (r: 

0.2m, th :15°, d:16), the first loop indicates the initialization 

process of the robot reaching the unknown environment for 
the first time, and the number of updates is relatively large, 
the remaining loops can detect the repetitive poses stored 
before but it is difficult to ensure that running trajectories are 
completely coincident with them, which leads to a small 
number of updates. 

In order to verify the performance of the proposed 
algorithm in a large-scale environment, we used the poses 
information of KITTI dataset and Oxford dataset, which 
contain 1592 and 126362 different pose points respectively. 
Comparing to the above-mentioned mobile robot 
experiments, the datasets provide more poses and a larger 
range of motion. The trajectories are shown as Figure 
7(a)(c). , we also set the loop number to 4 in this part. 
Figure 7(b)(d). and TABLE III. show us the consumed time 
per detection and its variation trend using two datasets. 
Comparing with the KITTI dataset, the Oxford dataset 
provide more poses to be searched and stored, but the time 
spent on detection remains stable and shows no trend of 
increase, that is, the time of detection does not increase with 
the amount of poses storage, which demonstrate the 
efficiency of the algorithm in a large-scale cyclic 
environment.  

 

Figure 7.  Trajectory and consumed time using KITTI and Oxford dataset. 

The first loop in the experiment is used to traverse and 
store all the poses provided by datasets, and it is different 
from the previous real-world experiments that the other 
three loops use the same poses data as the first loop, so their 
trajectories coincide completely. TABLE IV. shows that 
except for a certain number of updates in the first loop, the 
number of updates in the remaining loops is 0, which means 



the accuracy of the proposed repetitive pose detection 
algorithm is 100%. 

The KITTI dataset has a low density of poses, while the 
data density in the Oxford dataset is large and there are 
some repetitive poses in the trajectory. We gradually 

increased the detection density by setting parameters (r, th , 

d) and detected the number of pose update as shown in 
TABLE IV. According to the analysis, the increase of the 
detection density has a certain effect on the experiments 
using Oxford dataset which is with a higher pose density, it 
leads to an increase in the number of pose updates, 
confirming the practicability of the algorithm parameters 
which can be set as need by user. 

TABLE III.  CONSUMED TIME (KITTI & OXFORD)  

Average 
time(s) Orientation Position Pose 

Standard 

deviation 

KITTI 
(1592) 

 2.4639e-05 6.6793e-07 2.5306e-05 1.2208e-05 

1 2.4556e-05 6.9323e-07 2.5249e-05 1.1488e-05 

2 2.5091e-05 6.7145e-07 2.5762e-05 1.2133e-05 

3 2.5104e-05 6.5908e-07 2.5764e-05 1.3525e-05 

4 2.3803e-05 6.4794e-07 2.4451e-05 1.1499e-05 

Oxford 

(126362) 

 1.7462e-05 2.0961e-07 1.7672e-05 5.2048e-06 

1 1.7422e-05 2.0268e-07 1.7625e-05 5.5866e-06 

2 1.7698e-05 2.2618e-07 1.7924e-05 7.0578e-06 

3 1.7440e-05 2.0281e-07 1.7643e-05 5.6958e-06 

4 1.7288e-05 2.0678e-07 1.7495e-05 5.6867e-06 

 

TABLE IV.  UPDATE NUMBER (KITTI & OXFORD)  

Update 
number Loop 

Parameters (r, th , d) 

(0.1,10,16) (0.05,5,16) (0.02,2,16) 

KITTI 
(1592) 

1 1592 1592 1592 

2-4 0 0 0 

Oxford 
(126362) 

1 70947 79700 85291 

2-4 0 0 0 

IV. CONCLUSIONS 

In this paper, we proposed an octree-based repetitive 
pose detection method, which addresses the problem of 
large time-consuming in the pose detection tasks, comparing 
to the traditional graph-based method, our approach can 
perform better in a large-scale cyclic environment. The 
major advantage of our approach is that while ensuring the 
high accuracy, the detection time does not rise with the 
increase of the number of poses storage, and it is 
conceptually straightforward and easy to be implemented. 
The position detection is mainly realized based on octree, 
and the orientation detection is implemented by vectors 
comparison on the basis of octree structure. In addition, we 
set up the adjustable octree resolution and angle threshold 
which can be used for sparse pose storage and search 
according to the requirement, it increases the practicability 
of the algorithm. In the experimental part, the GNSS-IMU 
framework is used to provide the pose data of outdoor 

mobile robot without error accumulation, which verifies the 
feasibility of our approach. Then the KITTI dataset and 
Oxford dataset were used to further complete the larger-
scale experimental verification, the results of the 
experiments show that the average consuming time of our 
pose detection method is less than 1.0×10-4s, and the 
repetitive detection accuracy is up to 100%. 

The proposed algorithm is a basic method. For future 
work, we will pay more attention to the application of our 
approach, for instance, the exploration of unknown 
environment using mobile robots, it can be foreseen that the 
proposed octree-based repetitive pose detection algorithm 
can improve the exploration efficiency and complete the 
exploration tasks more quickly. 
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