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a b s t r a c t

So far, gas leakage caused by natural or human factors has led to serious consequences in terms
of social security. Previous strategies for locating the odor sources appear to be either defective or
incomplete. For enhancing the success rate and rapidity, this paper aims to present a novel and
complete strategy in search of lurking gas sources. Particle filtering and information entropy are
both employed to track the plume information. To improve the tracking efficiency in this process,
a novel objective function is designed by considering the entropy gains of the suspected targets
as well as the repeated exploration scores. Considering the pseudo sourced caused by obstacles, a
statistics-based source determine algorithm is proposed to confirm the source’s authenticity, while
the artificial potential field method is subsequently applied to eliminate the distractions introduced
by the pseudo sources. Simulations and on-site tests are both carried out while results showed that
the proposed scheme is competent to complete sources localization task in the scene that contains
randomly distributed obstacles and pseudo source.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Dangerous gas diffusion caused by natural or man-made fac-
ors could pose a huge safety hazard to our real life. How to
ocate the gas sources after accident leakage has already be-
ome a research concern over the last few decades in terms
f emergency action and anti-terrorist system. Amid the exist-
ng strategies, static sensor network [1] is widely considered as
n effective method to monitor gas sources, which had shown
ts feasibility in many applications background. However, there
re still few deficiencies causing undesirability, i.e. complex in-
tallation, heavy maintenance cost, limited flexibility, and the
eed of certain mathematical model to determine the sensor
rrangement [2]. With the development of mobile robot, the ap-
lication of mobile sensor networks (MSNs) on different vehicles
uch as unmanned ground vehicles [3], underwater robots [4],
rones [5,6], and even multiple robots [7–9], has drawn the
esearchers’ focus. Normally, the process of searching dangerous
as sources by MSN system consists of three parts: plume discov-
ry, plume tracking, and gas source confirmation [10]. The odor
nformation are gathered during the plume discovery process,
fter which the robot could quickly approach the gas source un-
er the navigation of existing knowledge, namely plume tracking.
as source confirmation process is to both distinguish whether
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E-mail address: wangweidong@hit.edu.cn (W. Wang).
ttps://doi.org/10.1016/j.robot.2020.103619
921-8890/© 2020 Elsevier B.V. All rights reserved.
the suspected gas source is real and confirm its location. For
better classify the existing strategies, Hutchinson M et al. [11]
divided the gas source localization algorithms into bio-inspired
source location [12,13] methods and Bayesian-based source loca-
tion methods. Bio-inspired methods typically imitate the foraging
and social behavior of animals, such as silkworm moths and dung
beetles. These strategies are regarded as reactive search strategies
without introducing probability factors. For example, Braiten-
berg V et al. [14] designed a robot that relies on concentration
gradient for source localization. This method is inspired by the
foraging behavior of lobsters, which search for food by climbing
concentration gradient. Ishida’s et al. [15] introduce a zigzag
method by imitating the dung beetles. This strategy incorporates
the information obtaining from gas sensors and wind sensors,
controlling the robot to move upwind in a z-shaped pattern until
the robot reaches the gas source. With low-cost introduction and
decent performance, this method has been commonly employed
in other research [16]. After the proposition of zigzag algorithm,
Lino Marques et al. [17] compared the performances of three
existing source tracking strategies, i.e. strategy based on the
bacterial chemical tendency (climbing concentration gradient),
strategy based on the silkworm chemical tendency (zigzag search
against the wind) and the direct gradient tracking strategy in
the turbulent environment, eventually demonstrating that the
zigzag strategy worked the best. However, the experiment of
the above research were relatively crude without considering
dynamic factors such as gas accumulation in complex scenes.

https://doi.org/10.1016/j.robot.2020.103619
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2020.103619&domain=pdf
mailto:wangweidong@hit.edu.cn
https://doi.org/10.1016/j.robot.2020.103619
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Biologically inspired algorithms formed the main trend of the
early research about plume source localization. However, ex-
ternal disturbances such as sensor error and wind fluctuation
that could compromise the success rate and efficiency of the
search process in low concentration environment are generally
not included in this kind of algorithm. On the contrary, as one
kind of cognitive searching method, source localization algo-
rithms based on Bayesian updating generally take several random
factors such as sensor errors, intermittent turbulence, etc. into
consideration. This family of strategies is much robust than the
bio-inspired methods, leading the main trend of modern source
positioning algorithm. Essentially, source localization algorithm
based on Bayesian framework is to perform source term estima-
tion (STE) [9,18–28] under the framework of Bayesian theorem.
The post-probability density functions of the source parameters
such as position, release rate and so forth can all be given by
Bayesian estimation. For instance, Massimo Vergassola et al. [18]
proposed a method to estimate the position of the source by using
mesh-based nonlinear filter, assuming that the other parameters
of the source to be part of the prior knowledge. This method
possesses inferior feasibility as the system parameters such as
source release rate, particle life, etc. are basically unknown in
real practice. It then led to the research focus of using particle
filtering method to estimate the source terms [9,18,27,29,30].
For example, Hutchinson M et al. [29] estimate seven source
parameters synchronously by particle filtering. They use a two-
dimensional gas diffusion model to represent the number of the
gas particles that detected by the gas sensor. According to the
principle of maximum entropy sampling, the reward function is
defined as the entropy of the expected measurement distribution
(instead of the entropy of the expected posterior probability). The
sequential Monte Carlo method is also employed to estimate the
source parameters, showing the direction with maximum entropy
for the next sampling. In order to reduce particle dissipation,
the resample rule is subjected to the Markov chain Monte Carlo
(MCMC) move algorithm. Unfortunately, experiment of this strat-
egy did not include any physical obstacles, while external factors
such as gas turbulence and gas accumulation were also not taken
seriously, leading to a success rate of nearly 100 percent. Similar
to [29], Michael H et al. [30] obtained a better performance by
solely improving the reward function. Neumann P P et al. [5]
put forward a composite scheme that combines biological inspi-
ration method and particle filter. To both improve accuracy and
efficiency while guaranteeing robustness, the strategy adopts a
pseudo-gradient algorithm to assist particle updating.

However, due to the external factors such as sensor errors
and turbulence interference, all the above methods could easily
be trapped into local optimum, which may eventually result in
repeated wandering of the robot. In addition, most of the above
two types of source localization methods are only devised for
plume tracking. Although several bio-inspired algorithms can be
applied in both plume discovery and tracking [16,17], the final
gas source confirmation process were rarely mentioned. The main
reason is that most of the existing methods exhibited decent
performance at the expense of practicality. In the absence of
physical obstacles and neglect of external factors, high success
rate and accurate result could obviate the need for gas source
confirmation. But in the practical application, the windward side
of the obstacle could form a highly concentrate pseudo source due
to gas accumulation [31]. In this regard, gas source confirmation
is indeed an indispensable part of source localization strategy.
Moreover, most of the existing confirmation methods [31,32]
only function as the final decider without proceeding subsequent
treatment to the pseudo source: There is no guarantee that the
pseudo source will not be treated as the real gas source in the

following searching process.
As a response to the above analysis, the improvement and
contribution presented by this paper mainly concentrate on the
following aspects:

(1) To propose a Bayesian-based strategy capable of complet-
ing practical gas source localization task within complex
environment for ground-based mobile robots.

(2) To avoid the searching trap by improving the reward func-
tion of the updating strategy.

(3) To present a gas source confirmation method capable of
further filtering the pseudo source while securing the lo-
calization of the real target.

Amid the source localization strategy, the plume discovery
is realized on the basic of zigzag algorithm. The plume track-
ing process is implemented in light of the scheme presented
in [30], i.e. to apply particle filtering method and information
entropy algorithm to track the plume feathers. To avoid repeated
searching in this stage, we improve the reward function on the
basis of octree strategy so as to enhance efficiency. In the last
stage, considering the existence of pseudo sources, we propose
a target confirmation method as well as an artificial potential
field (APF) algorithm to eliminate the influence of the pseudo
sources. During the on-site experiment, the proposed scheme
showed outstanding performance in terms of practicability, effi-
ciency, success rate and accuracy, while the simulation showed
that the pseudo source disposal method can effectively reduce the
surrounding distraction.

The rest of this paper is arranged as follows: Section 2 defines
the problem this paper solved and describes the components of
the entire system and the functionality of each part; Section 3
provides detailed information (including the zigzag method, par-
ticle filtering method, information entropy algorithm and the
design of the improved reward function) for implementing the
plume discovery and tracking algorithm. Section 4 introduces
the gas source confirmation algorithm as well as the theoretical
model of the pseudo source processing algorithm. Experiment
and simulation are both carried out in Section 5, where the
performance of the source localization strategy is verified. In the
last Section, conclusions and future focus are drawn.

2. Problem definition and system description

2.1. Problem definition

Define S as a gas source. Let PR(x, y) ∈ R2 be the current posi-
tion of the robot. Since the sensor is almost mounted in the center
of the robot which means the orientation of the robot hardly has
any influence on the gas concentration of current robot position,
robot’s orientation is not considered as an input. The robot is
equipped with perception sensors, including concentration sensor
and wind sensor. Let Ccur be the concentration of current position,
vs be the wind speed and ϕs be the wind direction. The main
problem for this paper is to search S with Ccur , vs and ϕs. Let Cthres
e the lowest value that can be considered as detecting the gas.
onsider the environment is unknown so that the initial position
ay not detect any gas, namely, concentration value is lower

han Cthres. In addition, according to the analysis in Section 1,
as source confirmation is needed at the end of search process.
hus, the main problem can be divided into three different sub-
roblems. Problem 1 is about searching plume at the beginning.
roblem 2 is about tracking plume to guide robot move to gas
ource. Problem 3 is about confirming the authenticity of source
ound after Problem 2. All problems for this paper can be defined
s the following.
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Fig. 1. Complete system of the source localization strategy.
Problem 1. When Ccur is lower than Cthres. Given Pcur , determine
the goal position Pgoal(x, y) robot needs to reach in next step.

Pgoal = f1(Pcur , ϕs) Ccur < Cthres (1)

Problem 2. When Ccur is larger than Cthres. Given Pcur , determine
the goal position Pgoal robot needs to reach in next step.

Pgoal = f2(Ccur , Pcur , vs, ϕs) Ccur ≥ Cthres (2)

Problem 3. Given Pcur , determine whether the detected gas source
Sdetected, can be obtained after solving Problem 2, is true. Let
PS(x, y) be the position of detected source and Sstate be the final
result. If Sstate is true, then the detected source is a real gas source
and PS is the final location of gas source. Otherwise, it is a pseudo
source and then back to Problem 2, restarting to track plume.

Sstate = f3(Ccur , Pcur , vs, ϕs, PS) (3)

Among all three problems, f1, f2 and f3 represent three algo-
rithms used in three stages, not specific functions. The variables
in brackets are inputs to the robot during three different stages.

Though these three problems are essential for the whole pro-
cess, this paper will focus on the last two problems. For Prob-
lems 1 and 2, the main difference is whether or not consider Ccur
and the problems in (1) and (2) will be both solved at each step.
For all three problems, robot position Pcur is always known.

2.2. System description

To solve the above three problems, this paper proposes a set
of source-finding strategy. As shown in Fig. 1, the overall system
mainly comprises three parts: plume discovery, plume tracking
and gas source confirmation. These three parts will solve the
above three problems separately.

As the above flow chart suggests, the major role of the plume
discovery part is to guide the robot to search towards the direc-
tion in which the odor propagate. In this paper, the biologically
inspired zigzag search algorithm is used to locate the gas sources
to a very first approximation. A more exact searching area centers

the position of the robot after plume discovery is then defined
for further plume tracking. In this stage, the particle filtering
method is applied as multi-dimensional particles are sampled
(according to the initial parameters of sources), weighted (accord-
ing to the gas concentration data) and resampled (according to
the weight distribution). If the converge condition is fulfilled, the
searching system will continue to proceed with gas source confir-
mation process. Otherwise, the robot will keep approaching the
potential sources by moving towards the current goal position,
which is obtained according to the improved reward function.
The source confirmation stage is to judge the authenticity of the
potential sources, namely the convergent position discovered in
the last procedure. The confirmation algorithm of this part is
implemented along the predefined boundary that circles a much
precise region without obstacle hamper. If the source is real,
the accurate location will be identified, suggesting the searching
task is accomplished. Or else an APF method will be established
around the pseudo-source to disperse the particles, keeping the
particles from meaningless re-converging, and start to track the
plume again.

3. Plume discovery and tracking

3.1. Plume discovery

As a famed method for plume discovery, the zigzag algorithm
is implemented as follows: By reading the wind direction from
the wind sensor, the robot moves windward in a zigzag with
a certain angle α until any suspicious gas are discovered, after
which a more precise square searching area is defined. The plume
discovery procedure is captured in Fig. 2, where XWOWYW is
the world coordinate system ΣW , XROOROYRO denotes the robot
coordinate system ΣR at any certain moment when there is no
plume has been detected, while XRnORnYRn denotes the robot
coordinate system ΣRn at the moment that potential plume has
been discovered. The further 4 m × 4 m searching area large
enough to cover the exact location of the gas source (cyan region
in Fig. 2) is then delimited by centering ΣRn coordinate. To better
distinguish these two separate stages, we use ΣS instead of ΣRn

to represent the searching coordinate system in the following
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Fig. 2. Plume discovery.

lume tracking process (even though they are the same). The
elationship between the ΣS and ΣW can be described by the
ollowing formula.
Wp = W

S T
Sp (4)

here Sp represents the coordinates of the point under ΣS in
earching area. W

S T is the homogeneous transformation from
S to ΣW . Wp represents the corresponding coordinates of Sp
nder ΣW . We take the position and orientation of the robot at
he moment when plume is discovered as W

S T . Since the plume
racking stage and confirmation stage will be conducted under ΣS
hile the goal positions for navigation and the final position of
he source are under ΣW , Eq. (4) will be used only when a goal
ositions under ΣS in plume tracking stage or the source location
nder ΣS in source confirmation stage are obtained.

.2. Plume tracking

.2.1. The gas diffusion model
In this paper, the gas diffusion model is the same as the model

roposed in paper [30], which can be described as follows:

(pk|Γs) =
rs

4πDs ∥pk − ps∥
exp(
∥pk − ps∥

λ
)exp(
−β

2Ds
) (5)

=

√
Dsτs

1+ (v2
s τs/4Ds)

(6)

= (xk − xs)vscos(ϕs)+ (yk − ys)vssin(ϕs) (7)

here Γs = [xs, ys, rs,Ds, vs, ϕs, τs]
T represents the state vec-

tor of the gas source, pk represents the position of the robot,
i.e. the sensor coordinates, C(pk|Γs) represents the average gas
concentration at pk in the condition of Γs), λ and β are the
intermediate variables that can be calculated by Eqs. (3) and (4),
(xs, ys) represents the coordinates of the gas source, rs represents
the gas release rate, Ds represents the effective diffusion rate,
vs represents the speed of the wind, ϕs represents the current
direction of the wind and τs represents the lifetime of the gas
particles.

To test the practicability of the above diffusion model, the
concentration distribution of a specific gas source generated using
Eq. (2) is captured. As it is shown in Fig. 3a, the solid point sitting
at (−1.2, −0.1) represents the location of the gas source. Fig. 3a
reveals the gas distribution in the obstacle-free scenario, where,
rs = 680, Ds = 0.15, τs = 4.6, vs = 2.0, ϕs = 180◦. The
gas distribution in the scene with obstacle can be simulated as
Fig. 3b, in which the black rectangle nearby the origin represents
the preset obstacle. Fig. 3 shows that the phenomena of gas
accumulation on the windward surface and gas cavitation on the
leeward surface are both factually portrayed, exhibiting an ideal
performance of the adopted gas diffusion model.

3.2.2. Theory basis
The plume tracking strategy employed by this paper basically

draws on the research method used in [30], while the reward
function is herein revised for improving the efficiency of the
plume tracking. To save space for presenting the rest of the re-
search work, detailed principle and theoretical derivation of both
the particle filtering and information entropy in plume tracking
are arranged in Appendix A, based on which the final object
function can be expressed as follows.

m∗k = arg max
mk∈Mk
{H(mk)} (8)

H(mk) = −
⌊ẑ⌋max∑
ẑk+1=0

p(ẑk+1(p̂k+1)|Z1:k) log p(ẑk+1(p̂k+1)|Z1:k) (9)

where m∗k is the best direction of motion corresponding to the
maximum entropy. mk ∈ Mk and Mk = {↑,↓,←,→}, whose
elements indicate the action of moving forward, backward, to-
wards the left and right from the current position. H(mk) is the
entropy function, which can be expressed as Eq. (9). Z1:k =
{z1(p1), . . . , zk(pk)} indicates the sensor measurement so far col-
lected by moving from the track planning point p1 to pk, p̂k+1
represents the next alternative planning point, ẑk+1(p̂k+1) indi-
cates the expected sensor readout at the next position p̂k+1 after
executing mk. ⌊⌋ is to round down. Although the actual value of
ẑk+1(p̂k+1) is unknown, it can still be approximated by the current
posterior probability distribution obtained by particle filtering.
Eq. (9) is the original reward function based on [30]. With Eq.
(8), the next best search direction can be obtained.

3.2.3. Improved reward with repetitive rating
Due to the potentially adverse factors including strong turbu-

lence, gas acceleration, cavitation around the obstacles and low
concentration introduced by the environment, it would be almost
impossible for the robot to move straightly towards the source
origin in the process of source localization. Instead, the searching
trace of the robot generally tend to be tortuous, in which case the
same searching area could be accessed for multiple times. Since
the system gains virtually no information for particle updates in
this case, the robot may keep wandering, and even be trapped
in a certain area, which can seriously damage the efficiency of
the source localization. As it is shown in Fig. 4, the phenomenon
of repetitive search has been recorded in part of the experiment
reported by the previous research [30].

The main reason that causes the above dilemma is that the
best target point corresponding to the maximum information en-
tropy cannot be clearly distinguished when the scores of different
directions calculated by Eq. (9) turn out to be almost the same. To
solve this problem in the process of plume tracking, we adopt the
repeated location search algorithm based on the octree method,
which has been proposed in our previous study [33], to search for
the repetitive points. The reward function is also improved based
on the Repetition Rating algorithm presented here. The principle
of this algorithm is as follows: Consider m(j)

k ∈ Mk(j ∈ {1, 2, 3, 4})
to be one of the four alternative moving directions of the robot
while p̂(j) to be the corresponding planning point.
k+1
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Fig. 3. Distribution of the gas concentration. (a): obstacle-free scene. (b): scene with an obstacle.
Fig. 4. Robot trajectory in the experiment reported in [30].

In order to evaluate the repetition rating of the four candidate
arget positions, we introduce a parameter ρ ∈ Sρ to be the range
coefficient, where Sρ represents a constant set of this coefficient.
et λm be the length of each motion step. By multiplying ρ with
he moving step λm, we can determine a set of circular regions
entering the alternative target point as shown in Fig. 5 (where
ρ is set to be {0.4, 2.0, 4.0}). Through these particular regions,
e can assess the repetition rating of the candidate position. The
ore previous trajectory points are included by these regions,

he higher repetition rating this alternative target is. To obtain a
air rating result, the trajectory points that have been included by
he inner region will not be again counted when considering the
uter region. As such, the improved reward function is designed
s follows:

(m(j)
k ) = α

H(m(j)
k )∑4

j=1 H(mj
k)
− β

∑
ρr∈Sρ (ρrλm)−1Cρrλm (p̂

(j)
k+1)∑4

j=1
∑

ρr∈Sρ (ρrλm)−1Cρrλm (p̂
(j)
k+1)

(10)

It can be seen from Eq. (10) that the rating is essentially
evaluated by the information entropy and the number of the
previous planning points being including in the predefined re-
gion, while the weights of these two items are represented by
α > 0 and β > 0, respectively. (ρrλm)−1 represents the score
of each trajectory point that falls into the ρrλm region (In Fig. 5,
r ∈ {1, 2, 3}), while Cρrλm (p̂

(j)
k+1) represents the number of these

points.
∑

(ρrλm)−1Cρrλm (p̂
(j)
k+1) can therefore represents the total

score of the repetitive trajectory points around p̂(j)k+1.
The improved reward function possesses several characteris-

tics that benefits the updating process to a certain extent:
(1) Assuming the number of the points being included by

the ρ λ region is fixed, the smaller the radius of the current
r m
Fig. 5. Schematic of the repetition rating algorithm.

defined region is, the higher repetition rating gets, with lower
total reward gains.

(2) Assuming the boundary of one specific ρrλm region is
fixed, the more previous trajectory points are included, the higher
repetition rating gets, the lower total reward gains.

(3) The power item (ρrλm)−1 is adopted to estimate the rep-
etition score of the trajectory points being included by the ρrλm
region, which allows the repetition rating to rise at a power speed
as the ρr decreases, showing an increasingly stronger rejection to
the nearby repetitive point.

At last, by replacing the reward function with Eq. (10), the
best motion direction corresponding to the highest reward can
be derived as follows:

m∗k = arg max
mk∈Mk
{R(mk)} (11)

4. Source confirmation and pseudo-source processing

Although previous steps have included a range of factors in
the process of searching the gas source, the particles could still
converge to a false point due to the influence pose by the envi-
ronment, such as the existence of the pseudo-source that formed
by the gas accumulation on the windward surface of the obstacle,
unreasonable initial settings of the source state parameters, or
the discontinuity of the gas propagation. Therefore, it is necessary
to design a gas source confirmation algorithm to distinguish
whether the discovered source is real in the converged posi-
tion of the particle. Also consider the distractions that may be
introduced by the pseudo sources, the gas source confirmation
method proposed here are supposed to possesses the following
two functions:

(1) The proposed method should be able to evaluate the au-
thenticity of the candidate gas source and decide whether it is
real.

(2) The proposed method should be able to eliminate the effect
of the pseudo sources that were once confirmed.
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4.1. Source confirmation

The necessary conditions for determining whether there is a
gas source around the suspected position are as follows: Firstly,
the concentration of the gas around should be high enough;
Secondly, the gas plume should always stem from the direction
of the candidate location. With a predefined confirmation region,
the above logic can be implemented as follows:

OS → (NS/N ≥ η) ∧ (ns/NS ≥ ξ ) (12)

OS → (NS/N < η) ∨ (ns/NS < ξ ) (13)

where OS represents the action of authenticating the suspected
gas source while OS is just the opposite. The symbol → repre-
ents a logical equivalence. NS represents the number of times
he gas concentration exceeds the preset threshold during the
onfirmation process, N represents the total steps of the con-
irmation stage. ns represents the number of times the particle
onvergence position falls in the confirmation region when the
as concentration exceeds the threshold, η and ξ represents the

corresponding experienced thresholds.
η and ξ are both experienced thresholds. With η, we can

only identify pseudo sources whose concentration is not high
enough to be a true gas source. Consider the true source with
strong wind from one direction, leading to a very small area
with effective measurements when detecting around the source,
η will not be set too large. ξ is the threshold that can identify
most pseudo sources. For true source, when detecting around the
source, most convergence location of effective measurement will
fall in the confirmation region, while for pseudo source, most
convergence location of effective measurements will not because
the distribution around pseudo source is not obey the model we
use for a true source, namely Eq. (5). Then we can use the value
of ns/NS to identify true source and pseudo source.

With the plume tracking algorithm presented in Section 3, the
suspected gas source location can be obtained, which is essen-
tially the coordinates corresponding to the global maximum point
of the posterior probability density (PPD). And by establishing a
coordinate system with the same orientation of ΣS , the confir-
mation area centering the convergence position can be initially
defined as follows:

S = {(x, y)|x ∈ [Xmin
conf , X

max
conf ], y ∈ [Y

min
conf , Y

max
conf ]} (14)

L = max{σx, σy} (15)

where S represents the initially defined square area and L repre-
ents its initial length, σx and σy represents the standard devia-
tions of the x and y coordinates of the particles, respectively. The
initial confirmation area defined above is able to contain most of
the particles. The schematic of constructing the final confirmation
area is shown in Fig. 6: Based on the initial area, the robot will
do collision check along the red boundary. The dotted line is the
outline of the robot and the colored area is obstacle. Four test
points are selected on the outline. When any test point is inside
the obstacle area, collision is supposed to be detected. Then the
red boundary will be expanded outward until it can enclose the
obstacle. In Fig. 6, step1 detects collision and then step2 and
step3 expand the red boundary to enclose the obstacle. In step4,
collision is detected again between test points and the obstacle.
Thus, step5 expands the red boundary again until no collision
along the red boundary is detected. The final confirmation area
is like the rectangle area in step6.

With the area completely defined, the robot will be able to
implement the major confirmation procedures. In order to real-
ize the gas source identification, the robot keeps moving along
the boundary of the confirmation area for 3 cycles, judging the
 e
Fig. 6. Confirmation area initiating and the collision-free boundary determining.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

authenticity of the suspected source based on the logic process
Eqs. (12) and (13). To ensure that the particle states is mutually
independent in each of the searching cycle, the particles need to
be uniformly resampled at the beginning of each round, while the
particle filtering strategy presented in Section 3 is continuously
performed. Fig. 7 describes the conformation process of the robot
in a single circle, in which 7a shows the particle convergence
state after the plume tracking process; 7b shows the first round
uniform sampling within an enlarged square region (with the
length of 6L) after the confirmation area is determined; 7c, 7d
and 7e together record the converge process of the particles and
the trace of the robot by moving along the boundary of the
confirmation area, 7f captures the state of the particles at the end
of this cycle. Since the convergence showed by 7f is inevitable in
each of the searching circle, it is necessary to resample before
starting a new confirmation cycle, otherwise the already con-
verged population can hardly provide source information for the
next confirmation round.

Fig. 7 is used to show the process of confirmation stage. Since
the particles converge to the location of real source directly at the
end of plume tracking stage, the influence of pseudo source does
not show up. In Section 5.2, we give another simulation results
where particles converge to a pseudo source in Fig. 20 that can
demonstrate the effect of pseudo source clearly.

4.2. Pseudo source processing

The sources that discovered through the plume tracking pro-
cess yet do not pass the confirmation process will be identified
as the pseudo sources, which could form extra distraction to
further source localization. To keep the particles from converging
to the pseudo sources again, a processing algorithm based on
artificial potential field (APF) method is proposed for eliminating
the undesirable distractions.

First introduced by Oussama Khatib in 1990 [34], the APF
method has already become a popular strategy in terms of motion
planning and obstacle avoidance. Here to keep the particles away
from the center of the pseudo source, we introduce a repulsive
APF, which can be described as follows:

Ureq(q) =
{ 1

2 (
1
ρ
−

1
ρ0
)2, if ρ ≤ ρ0

0, if ρ > ρ0
(16)

here q represents the object, ρ represents the shortest distance
etween the object and the obstacle center, ρ0 represents the
ffective distance of the obstacle repulsion, Ureq(q) represents the
alue of the repulsion field. When ρ is greater than ρ0, the object
ill not be repelled, in which case the corresponding potential
nergy is equal to 0.
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Fig. 7. Simulation of the source confirmation (a): the convergence state in plume tracking stage. (b): uniform sampling in conformation stage. (c)–(e): the converge
process of the particles. (f): state of the particles at the end of this cycle.
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By solving the gradient of the repulsive field, we can obtain
the corresponding repulsive force as follows.

Freq(q) = −∇Ureq(q) =
{
( 1
ρ
−

1
ρ0
) 1
ρ2∇ρ, if ρ ≤ ρ0

0, if ρ > ρ0
(17)

Within the framework of the above APF, if every particle is
egarded as an object q, while the pseudo source in the confir-
ation center is regarded as the obstacle center, the repulsive

orce will keep increasing as the particles approaching the pseudo
ource. Then all particles will potentially keep away from the
seudo source. The distribution of the resultant forces and the
orresponding x components is shown in Fig. 8a, where the black
pot in the center represents the pseudo source.
It is obvious that the resultant force is inversely proportional

o the distance between the object and the center. In this paper,
he repulsive APF is applied only in the stages of both the RPF
nd M–H sampling to keep the particles from re-converging to
he pseudo source, there is no need to employ the APF in the
rocess of uniformly resampling as it is merely a step of randomly
eproduction.

Since the parameters x and y of the particle state vector are
utually independent when sampling through RPF, the xs and

s can be separately sampled from the Gaussian core without
ffecting each other, which can essentially be regarded as two
arallel 1D movement. Thus, we employ two 1D repulsive field
hown in Fig. 8 to get stronger repulsive forces in both the x and
direction. In 1D repulsion field, the repulsion force is inversely
roportional to the distance along one direction. Take a specific
article A as shown in Fig. 8a as the example: when using 2D
epulsion field, according to the force applying mechanism of
he APF, the corresponding repulsion is inversely proportional to
A. The repulsion along the horizontal direction (i.e. FAx

req) turns
ut to be pretty poor since the x component of A is very small.
owever, when using 1D horizontal repulsion field for x, the
epulsion force of point A is inversely proportional to the distance
x, which is much larger than that in 2D field. It is the same with
D vertical field for y. Thus, with 1D repulsion field, we can make
ure that the particles all keep away from the center both along
he horizontal direction and the vertical direction. Generally, the
echanism shown in Fig. 8b is preferable to that shown in Fig. 8a.
For the superposed model that consists of two 1D repulsive

PF, the distances in the x and y direction can be defined as
ollows, respectively:
x
= ρx(q, qobs) = |qx − qxobs| (18)

y
= ρy(q, qobs) = |qy − qyobs| (19)

y solving the gradient, we can obtain the corresponding repul-
ive forces as follows:

x
req(q) = −∇U

x
req(q) =

{
( 1
ρx −

1
ρx
0
) 1
(ρx)2
∇ρx, if ρx

≤ ρx
0

0, if ρx > ρx
0

(20)

y
req(q) = −∇U

y
req(q) =

{
( 1
ρy −

1
ρ
y
0
) 1
(ρy)2
∇ρy, if ρy

≤ ρ
y
0

0, if ρy > ρ
y
0

(21)

here ρx
0 = ρ

y
0 = 0.5L, F x

req(q) represents the one-dimensional
epulsive force along the x direction, F y

req(q) represents the one-
imensional repulsive force along the y direction.
The red dotted line shown Fig. 9 provides a clearer view of the

epulsive force distribution of a one-dimensional repulsive APF
long the x axis, within which the obstacle is set at the origin, L
s set to be 0.42 (therefore ρ0 = 0.21), the maximum repulsive
orce is set as 20N. As it is shown, the repulsive force increases
harply when the distance is lower than 0.21.
In order to improve the accuracy of the final result of the

ource localization process, we also consider the situation in
hich the real gas source is mistakenly identified as a pseudo
ource during the source confirmation process. For this concern,
he possibility of letting the particles to converge again should be
roperly preserved, which can be realized by reducing the impact
ange of the repulsive force. To also retain the repulsion of the
PF, a correction coefficient is introduced as follows:

=
8(ρ0)3 (22)
9
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Fig. 8. The two different repulsion field models. (a): distribution of the repulsive forces within the 2D repulsion field. (b): distribution of the repulsive forces within
the 1D horizontal repulsion field.
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Fig. 9. The repulsive force of a 1D repulsive APF along the x direction.

Therefore, the repulsive forces along the x and y direction can
be modified separately as follows:

F x
req
∗(q) = KF x

req(q) (23)

F y
req
∗(q) = KF y

req(q) (24)

As the blue curve in Fig. 9 shows, the corrected repulsion curve
always passes through the point (2/3ρ0, 1), which properly limits
the impact range of the APF while still ensuring that most of the
converged particles are subjected to more than 1N repulsion. Sim-
ilar to the accept probability α in M–H sampling, the attractive
force of particle q can be defined as:

Fatt (q) =
p(zk|Γ

(i)
s,k)

p(zk|Γ
(i)
s,k)

(25)

Hence the combined force of the particles in the x and y
direction can be expressed as follows:

F x(q) = ξF x
att (q)+ ηF x

req
∗(q) (26)

y(q) = ξF y
att (q)+ ηF y

req
∗(q) (27)

where F x(q) represents the resultant forces of particle q in the x
direction, F y(q) represents the resultant forces in the y direction,
ξ represents the weight of the attractive force, η represents the
weight of the repulsive force.

According to the above definition, the attractive force shares
the same direction with the particle movement determined by
the RPF, while the force magnitude depends on the ratio of the
likelihood probabilities before and after the particle movement.
The pseudo source processing algorithm based on repulsive APF
is shown as Algorithm 1. Take the movement along the x direction
as an example, the processing are as follows.
Algorithm 1: Pseudo source processing algorithm based on APF
for i from 1 to N do

Compute F x(q) of the ith particle;
Sample u ∼ U[0, 1];
if |F x(q)|< u then

Refuse movement and Γ
(i)
s,k(x) = Γ

(i)
s,k(x);

else
Compute γ = hoptAkei/F x(q);
if γ ≥ 0 then

Move forward and Γ
(i)
s,k(x) = Γ

(i)
s,k(x)+ hoptAkei

else
Move backward and Γ

(i)
s,k(x) = Γ

(i)
s,k(x)− hoptAkei

end
end

end

(1) If the absolute value of F x(q) is less than u(u ∼ U[0, 1]),
he movement of the particle i will be refused, in which case the
article state is kept as Γ

(i)
s,k(x) = Γ

(i)
s,k(x);

(2) If the absolute value of F x(q) is equal or greater than u, then
hen F x(q) shares the same direction with the particle movement
etermined by the RPF, the particle will keep moving forward,
hat is Γ

(i)
s,k(x) = Γ

(i)
s,k(x)+ hoptAkei;

(3) If the absolute value of F x(q) is equal or greater than u, then
when F x(q) is in the opposite direction to the particle movement
etermined by the RPF, the particle will move reversely, that is

Γ
(i)
s,k(x) = Γ

(i)
s,k(x)− hoptAkei.

5. Simulations and experiments

In this section, by comparing with the experiment results
reported in [30], feasibility of the proposed source localization
algorithm is verified. In addition, validity of the pseudo source
processing algorithm is demonstrated through the simulation.
Model of the gas source distribution, particle filter and reward
function were all implemented within the python IDE, while the
octree-based repetitive position search method was implemented
within the C++ IDE.

As it is shown in Fig. 10, we adopt sticks of incense to be
the source of gas and the smoke it produced was to serve as
the plume. The wind was provided by a preset electric fan so
that the odor could spread over the scene. An obstacle is placed
nearby the source to test whether the proposed algorithm is able
to locate the source when it was partially blocked. The mobile
robot used to perform the task is shown in Fig. 11, while the
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Fig. 10. Distribution of the gas concentration.

Fig. 11. Distribution of the gas concentration.

Fig. 12. Distribution of the gas concentration.

able 1
he employed sensors and corresponding performances.
Sensor Characteristics

Velodyne-16 Lidar 10 Hz, navigation and obstacle avoiding
Laser dust transmitter 3 Hz, concentration detecting
Wind speed sensor 10 Hz, wind speed detecting
Wind direction sensor 10 Hz, wind direction detecting

real experiment environment is shown in Fig. 12. Four kinds of
sensors with performances listed in Table 1 were mounted on
the robot, among which the laser dust transmitter (LDT) was the
main sensor to collect the plume information. The employed LDT
is able to detect the concentration of the PM1.0 to characterize
the plume emitted by the incense, while the effective detection
range of the concentration was set from 10 mg/m3 to 100 mg/m3.

.1. Source localization experiment

By initially setting the robot’s coordinate system coincides
ith the map coordinate system (which is also ΣW in the ex-
eriment), the initial position of the robot was set to be (0, 0,
◦). Threshold value of the concentration during plume discovery
as set to be 20 mg/m3 while the angle of zigzag search was
et to be 45 degrees. Within the experiment, source of the plume
as preliminarily discovered by the robot at coordinate (2.26,
.57, 45◦) after 8 zigzag steps. Origin of the searching coordinate
ystem ΣS was therefore set to be (2.26, 0.57) while orientation
as set to be 45 degrees from ΣW . W

S T in Eq. (4) will be obtained
y setting (2.26, 0.57) as translation and 45◦ as rotation. The
ide length of the square search area was set to be 8 m. Other
able 2
nitial setting of the experiments.
Parameter Value or distribution

rs U (350, 700)
Ds U (0.4, 0.8)
vs U (0.5, 2.5)
ϕs U (80, 100)
τs U (3.5, 5.0)
xs U (−4, 4)
ys U (−4, 4)
Step length for plume discovery 0.4 m
Step length for plume tracking 0.2 m

parameters were initialized as shown in Table 2, where the wind
speed and wind direction were measured in advance by the wind
speed sensor and wind direction sensor, respectively. Since rs,
Ds and τs corresponding to the gas source (the incense) was un-
known, in order to ensure the accuracy of the gas diffusion model,
the initial intervals of these three parameters were estimated
by using the variable residue parameter determination algorithm
based on the Monte Carlo method. Detailed process can be found
in Appendix B.

Fig. 13 shows the real time changes of the particle state during
the plume tracking process, where the blue dots represent the
particle distribution, the red line indicates the robot trajectory,
the fork at the end of the trajectory indicates the current position
of the robot. Population of the particle was set to be 4000.
As shown in Fig. 13a, the particles were firstly sampled within
the searching area according to the standard two-dimensional
uniform distribution, and was considered to be converged if both
the standard deviations of the particles along the x and y direction
are smaller than 0.23, in which case other parameters were also
considered to be converged. Fig. 13b shows the evolution process
of the particles at step 14 while Fig. 13c shows the converged
state of the particles at step 24, where σx = 0.20 and σy = 0.21.

The PPD curve of gas source location was estimated based
on the convergence results. As shown in Fig. 14, the coordinates
corresponding to the peak of the curves in Figs. 14a and 14b
indicates the most likely location of the gas source, which turned
out to be (1.95, −2.80) under ΣS . It can be transformed to (5.62,
−0.04) under ΣW by using Eq. (4). The blue vertical solid line
represents the mean of this curve, that is 2.00 m along the x
direction and −2.94 m along the y, while the corresponding red
dotted lines on both sides represent the standard deviation.

According to Eqs. (14) and (15) presented in Section 4.2, four
corner points of the rectangular confirmation area can be ob-
tained under ΣS . Then with Eq. (4), the corresponding coordi-
nates of these points under ΣW which was (6.79, 1.33), (4.79,
1.33), (4.79, −0.87) and (6.79, −0.87) are obtained as well. The
source confirmation process was carried out under the coordinate
system of the confirmation area. The robot needed to move 3
cycles along the confirmation boundary while the number of
steps within a single circle was set to be 20, which is a total of
60 steps. The threshold value of the confirmation concentration
was set to be 30 mg/m3, which means as long as the measuring
result is bigger than 30, Ns in Eqs. (12) and (13) will add one.
Two threshold values η and ξ in Eqs. (12) and (13) were set
to be 0.3 and 0.5 respectively. During the confirmation process,
the number of times that the gas concentration exceeded 30 was
24 (i.e. Ns = 24), among which the number of times that the
particle convergence position fell into the confirmation region
was 15 (i.e. ns = 15). By applying Eqs. (12) and (13), we got
Ns/N = 24/60 > η and ns/Ns = 15/24 > ξ . Therefore, the gas
source is successfully confirmed.

In the experiment, the exact coordinates of the gas source
under Σ were (5.80, 0.20), while the gas source coordinates
W
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Fig. 13. Particle changes during plume tracking. (a): uniform sampling at the beginning of plume tracking stage. (b): state of particles at step 14. (c): converged
state of particles at step 24.
Fig. 14. PPD distribution of the gas source location. (a): PPD distribution in the x direction. (b): PPD distribution in the y direction.
Fig. 15. PPD of gas source parameter. (a): PPD distribution of r . (b): PPD distribution of Ds . (c): PPD distribution of τs .
T
P

stimated by particle filtering were (5.62, −0.04). Deviations in
he x and y direction were 0.18 m and 0.24 m respectively, while
he Euclid distance error was 0.3 m. Meanwhile, the PPD of the
as release rate rs, gas diffusion rate Ds and the lifetime of gas
articles τs were also estimated. The black curves in Fig. 15 show
he corresponding PPD distributions, while the green dashed line
epresents the priori information shown in Table 2.

To better review the processes of this experiment, the planned
earch trajectory of the robot is shown in Fig. 16, and the real
rajectory is shown in Fig. 17. The first 8 steps indicate the
lume discovery process, the middle 24 steps indicate the plume
racking process, while the last rectangular area indicates the
ource confirmation process. Fig. 17c shows the point-cloud map
orresponding to the environment in Fig. 12. In addition, the
orresponding obstacles are also labeled in the map. The trajecto-
ies in different stages combined with the environment map are
lso demonstrated in Fig. 17. These trajectories in the map are
onsistent with those in Fig. 16.
Of all the experiments that have been implemented, we select

hree sets of results to compare with the results reported in [30].
able 3
erformance comparison of the obstacle-free source localization experiments.
Indexes Results reported in [30] Results in this paper

1 2 3 1 2 3

xs error (m) 0.01 0.02 0.13 0.18 0.36 0.36
vs error (m) 0.03 0.03 0.02 0.24 0.27 0.13
Euclid error (m) 0.03 0.04 0.14 0.3 0.45 0.38
Steps for plume tracking 49 47 44 24 28 31

As it is shown in Table 3, case 1 corresponds to the experiment
described in this subsection. Since the type of the incense and the
parameters were not given in [30], we choose the results of the
experiment that used 6 sticks of incense (the highest case) as the
gas source in [30]. In our experiments, two sticks of incense were
used. Consider that there is only plume tracking stage in [30] and
one of the contributions of this paper is to improve the efficiency
of algorithm in [30], thus only steps in plume tracking stage are
counted in Table 3.

According to the step number shown in Table 3, our strategy is
more efficient in plume tracking stage than the method proposed
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l

Fig. 16. The planning trajectory. (a): steps for plume discovery inWCS. (b): steps for plume tracking and source confirmation in XSOSYS . (c): whole steps of source
ocalization.
Fig. 17. The actual trajectory. (a): the actual trajectory of the robot. (b): planned points of robot trajectory. (c): environment showed in Rviz. (d): plume discovery
in Rviz. (e): plume tracking in Rviz. (e): entire trajectory with environment.
Fig. 18. Experimental Robotics Platform. (a): turtlebot2. (b): robot used in this
paper.

in [30]. Nevertheless, the strategy presented here are of lower
accuracy when considering the error indexes. The main reason
is that the volume of the robot used in [30], i.e. the Turtlebot2, is
much smaller than that of our robot (As shown in Fig. 18). During
the navigation, the robot with larger volume will find it more
difficult to get closer to the gas source, which results in a much
smaller number of iterations in the process of plume tracking. The
accuracy is therefore affected. Although the accuracy of the pro-
posed source localization method is worse than that in [30], it had
basically met the requirements for practical source localization.

To get rid of the effect that stem from the robot volume, we
have also carried out the corresponding simulation. Environment
around the unblocked gas source was established on the basis of
the gas diffusion Eq. (5), while the gas source position is set to
be (−1.2, −0.1). Other settings were the same as it is shown in
Fig. 3. As such, the concentration at any point in the gas field
could be calculated. Fluctuation of the plume were simulated
by introducing the Gaussian noise. The robot’s trajectory during
the plume tracking process is shown as Fig. 19a. Location of
the source (−1.25, −0.11) was obtained according to the PPD
distribution shown in Figs. 19b and 19c. The Euclidean distance
error turned out to be 0.05 m, which achieved a similar accuracy
reported in [30].

5.2. Analysis of pseudo-source processing

As it has been shown in Fig. 3, the pseudo sources gener-
ally form on the windward surface of the obstacles as the gas
concentration on the windward surface always turn out to be
higher than the surrounding concentration. In this regard, two
requirements should be meet if a pseudo source were to form
and confirmed. Firstly, a large amount of gas should accumu-
late on the windward surface of the obstacle to form a pseudo
source; Secondly, the particles should converge at the position
of the pseudo source. With the natural accumulation of the gas,
the first requirement is relatively easier to be satisfied. While
the second requirement is rather difficult to be met due to the
existence of the real gas source, especially when the obstacle
appear to be close enough to the gas source. Thus, it would
be uneconomic to carry out the experiment of pseudo source
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Fig. 19. Results of the plume tracking simulation. (a): searching trajectory within the simulation. (b): PPD distribution in x direction. (c): PPD distribution of source
location in y direction.
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confirmation and processing. Instead, we decided to verify the
validity of the pseudo source processing algorithm through the
simulations. Though it still took a lot of time to create a pseudo
source scene, the performance of the proposed pseudo source
processing method still deserves our attention. Fig. 20 captures
a complete simulation process with the appearance of a pseudo
source, within which the physical environment was the same as
that in Fig. 3.

Fig. 20a indicates the state when the particles converge to the
seudo source at the end of the plume tracking process, Fig. 20b
hows the sample of particles based on uniform distribution
efore the source confirmation process actually start. Fig. 20c
hows the particle state at the end of the source confirmation:
bviously the particles did not fall into the confirmation area. The
hresholds η and ξ in Eq. (12) were still set to be 0.3 and 0.5.
he threshold value of concentration will be set to 30 mg/m3.
y applying Eqs. (12) and (13) in the state of Fig. 20c, we got
s/N = 55/60 > η while ns/Ns = 22/55 < ξ . The pseudo source
as as such identified. To further process the pseudo source, a
epulsive APF was established in the confirmation area. Figs. 20d
o 20i show the subsequent process to again track the plume
y considering the pseudo source. Fig. 20d indicates that the
articles were resampled from a wider uniform distribution to
nsure the particle diversity. Fig. 20e shows that the particles
ere all kept away from the center of the APF. Figs. 20f and
0g indicates the new process that the particles converged again.
inally, by applying Eqs. (12) and (13) in the state of Fig. 20i, we
ot Ns/N = 55/60 > η and ns/Ns = 46/55 < ξ , which suggested
hat a successful source confirmation process was accomplished.

From the results of the above simulation, two conclusions can
e drawn:
1. Existence of the pseudo sources can to a certain extent effect

he source localization process. That is to say, the gas source
onfirmation is actually an indispensable part of the gas searching
trategy.
2. The pseudo source processing algorithm based on the APF

ethod can effectively prevent the particles from converging
gain to the pseudo source position.

. Conclusion and future work

In this paper, a complete strategy is proposed in search of
angerous gas sources. The proposed scheme includes the zigzag
lume discovery method, the plume tracking method based on
article filtering method and information entropy reward, and
he source confirmation method with a pseudo source processing
lgorithm. Assisted mechanisms such as M–H sampling are also
esigned for addressing the problems that may arise in this
rocess. Overall, this article mainly has three contributions:
(1) A complete source localization scheme is proposed, while

etailed method and the corresponding algorithms are given.
(2) In the process of plume tracking, we avoid the phe-
omenon of repeated exploration by improving the reward func-
ion of the updating strategy

(3) A gas source confirmation method capable of further pro-
essing the pseudo source while securing the localization of the
eal target is presented.

Corresponding experiments and simulations show that the al-
orithm proposed in this paper is able to locate the gas source ac-
urately. Efficiency is also improved in comparison with the exist-
ng method. Moreover, the proposed source localization strategy
s well adapted to the obstacle scene.

Future research focus will be put on a new gas distribution
odel with considering obstacles to improve the adaptation of

he strategy to real world. After that, more research will be
arried out on the practical validation of the proposed scheme
n the outdoor environment to improve practicality as well as
he practical validation of pseudo-source processing algorithm in
eal world. In addition, we will try to enhance the emergency
esponse capacity of the robot by considering different situation
uch as a moving source and the searching method for multiple
ources.
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ppendix A. Particle filter algorithm and information entropy
n plume tracking

.1. Particle filter algorithm

The posterior probability distribution of estimating source pa-
ameter based on particle filtering can be expressed as:

(Γs,k|z1:k) ≈
N∑
i=1

ω
(i)
k δ(Γs,k − Γ

(i)
s,k) (A.1)

where Γs,k represents the state vector of the source estimated
at time k, z1:k = z1, . . . , zk represents the observation result
collected until time k, ω

(i) is the normalized weight of the ith
k
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Fig. 20. Simulation of pseudo source processing. (a): the state when particles converge to a pseudo source at the end of plume tracking. (b): uniform sampling of
particles at the beginning of source confirmation stage. (c): the state of particles at the end of source confirmation stage. (d): uniform resampling of particles at the
beginning of the second plume tracking stage. (e)–(f): evolution of particles during plume tracking stage. (h): resampling of particles at the beginning of the second
source confirmation stage. (i): final state at the end of source confirmation stage.
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particle at time k (
∑N

i=1 ω
(i)
k = 1, i ∈ 1, . . . ,N), δ() represents

he Dirac function.
We use Sequential Importance Sampling algorithm to get

Γ
(i)
s,k, ω

(i)
k }

N
i=1, which is expressed as:

Γ
(i)
s,k, ω

(i)
k }

N
i=1 = SIS({Γ (i)

s,k−1, ω
(i)
k−1}

N
i=1, z1:k) (A.2)

In the algorithm, Γ
(i)
s,k is sampled first and Γ

(i)
s,k ∼ q(Γ (i)

s,k|Γ
(i)
s,k−1,

z1:k), which means that a series of new samples {Γ (i)
s,k}

N
i=1 at the

time k can be obtained from the importance distribution q(Γ (i)
s,k|

Γ
(i)
s,k−1, z1:k). Then the unnormalized particle weight ω

∗(i)
k is ex-

pressed as follows:

ω
∗(i)
k = ω

(i)
k−1

p(zk|Γ
(i)
s,k)p(Γ

(i)
s,k|Γ

(i)
s,k−1)

q(Γ (i)
s,k|Γ

(i)
s,k−1, z1:k)

(A.3)

ssuming that the gas source position to be estimated is fixed
nd the gas release rate is constant, there is Γ

(i)
s,k = Γ

(i)
s,k−1 for any

particle i ∈ {1, . . . ,N}. Then the normalized particle weight can
be simplified as:

ω
(i)
k =

ω
∗(i)
k∑N

i=1 ω
∗(i)
k

=
ω

(i)
k−1p(zk|Γ

(i)
s,k)∑N

i=1 ω
(i)
k−1p(zk|Γ

(i)
s,k)

(A.4)

According to Eq. (A.4), the weight of the particle at time k depends
n the likelihood probability p(zk|Γ

(i)
s,k) and the weight of the

article at the previous moment, ω(i)
k−1.

To solve the likelihood probability p(zk|Γ
(i)
s,k), we introduce the

oisson distribution model, which can represent the matching de-
ree between the expected count rate and the real measured data
f the sensor in unit time. The expected count rate is obtained
ased on the sensor measurement model, which is also the gas
iffusion model, as shown in Eq. (2) in the body of the paper. The
alculation formula of Poisson distribution model is as follows:

r (hk|λk) =
λ
hk
k

hk!
e−λk (A.5)

where λk =
∫ t
0 R(pk(t ′)|Γs)dt ′ represents the expected counting

rate, i.e. the average number of the gas particles being detected
by the sensor in an unit sampling time t , R represents the average
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frequency that the gas particle being detected by the sensor. pk
represents the location of the gas sensor. Γs represents the source
parameter. hk represents the number of the particles that being
captured by the gas sensor at position pk, which is the actual
measurement value of the sensor.

In order to ensure the uniform dimension of Poisson distribu-
tion, concentration units are used for both λk and hk in Eq. (A.5).
ecause of hk ∈ Z+, we let hk = ⌊zk⌋, where ⌊⌋ is to round

down and zk is the unrounded concentration value obtained by
the sensor. Then, the likelihood probability can be expressed as
follows:

p(zk|Γ
(i)
s,k) =

[C(pk, Γ
(i)
s,k)]

⌊zk⌋

⌊zk⌋!
exp[−C(pk, Γ

(i)
s,k)] (A.6)

where C(pk, Γ
(i)
s,k) represents the expectation of the observational

oncentration caused by the temporal source particle i at position
pk and time k.

There is particle degradation phenomenon in SIS particle filter
algorithm, which means that the weight of some particles be-
comes very small after continuous iteration, so that their role in
posteriori probability estimation is negligible. At the same time,
these particles with small weights occupy a lot of computing
resources, which greatly affects the performance of estimation.
The effective particle number Neff is usually used to represent the
degradation degree of particles.

Neff ≈
1∑N

i=1(ω
(i)
k )2

(A.7)

It is necessary to resample particles when Neff is less than the set
threshold. The basic idea is to replicate the particles with signifi-
cant weight and discard the particles with very low weight while
keeping the total number of particles, N , constant. In this paper,
stochastic resampling algorithm based on stratified statistical

dea is adopted.
Due to iteratively replicating high-weight particles, the diver-

ity of particles is greatly reduced, causing the iteration unable to
ontinue, which is called particle dissipation. In this study, regular
article filtering and M–H (Metropolis–Hastings) sampling are
ombined to effectively reduce the influence of particle dissipa-
ion. Regular particle filtering introduces new samples through
aussian kernel. After that, M–H sampling algorithm compares
he likelihood value of new samples with that of the original
amples, and then accepts or rejects these samples with a certain
robability according to the comparison result. This algorithm
s based on MCMC algorithm, while solves the problem of high
ejection rate of MCMC mobile sampling, improving the sampling
fficiency.
By sampling the nuclear density of each particle, regular par-

icle filter converts the discrete approximate probability distribu-
ion into a continuous approximate probability distribution, and
he posterior probability distribution can be expressed as:

(Γs,k|z1:k) ≈
N∑
i=1

ω
(i)
k Kh(Γs,k − Γ

(i)
s,k) (A.8)

h(x) =
(det S)−1/2

n

h
K (

1
h
A−1x) (A.9)

where Kh(x) is the new kernel function after re-scaling the kernel
density K (), h is the kernel bandwidth, n is the dimension of the
state vector, and S = AAT is the covariance matrix of particles. The
kernel density function shall be a symmetric probability density
function, namely

∫
K (x)dx = 1 and

∫
∥x∥2K (x)dx <∞.

In this paper, gaussian kernel density function is k(x) = Φ(x),
where Φ(x) is the standard normal probability density function,
and the optimal kernel width is expressed as:

h pt = (4/(n+ 2))
1

n+4 N
−1
n+4 (A.10)
o
where N is the number of particles. The covariance matrix of
{Γ

(i)
s,k, ω

(i)
k } is shown in Eq. (A.11).

k =

N∑
i=1

ω
(i)
k (Γ (i)

s,k − µk)(Γ
(i)
s,k − µk)T = AkAT

k (A.11)

Then, the equation used to update particles with regular particle
filtering is Γ

(i)
s,k = Γ

(i)
s,k + hoptAkei, where ei ∼ N(0, In).

The M–H sampling compares the likelihood probability values
of the particles updated by regular particle filtering and that of
the original particles to decide whether to accept the transfer of
particles. Sampling u according to u ∼ U[0, 1], then whether to
accept the transfer is judged with following equation.

α = min{1,
p(zk|Γ

(i)
s,k)

p(zk|Γ
(i)
s,k)
} (A.12)

where α is the acceptance probability. If µ ≤ α, we accept the
ransfer and set Γ

(i)
s,0:k = {Γ

(i)
s,0:k−1, Γ

(i)
s,k}; Otherwise we reject the

transfer and set Γ
(i)
s,0:k = {Γ

(i)
s,0:k−1, Γ

(i)
s,k}.

A.2. Information entropy

Information entropy, which is used to describe the uncer-
tainty of the information source, is another essential algorithm
for proceeding the plume tracking. Since the higher the entropy
is, the more uncertainty lies in the information, the uncertainty
of the information should reduce most when the robot is moving
towards the direction with maximum information entropy. The
motion control is performed under the robot coordinate system
while the updating formula of the robot’s route can be described
as follows:[xk+1
yk+1
θk+1

]
=

[xk
yk
θk

]
+

[cos θk − sin θk 0
sin θk cos θk 0
0 0 1

][dxk+1
dyk+1
dθk+1

]
(A.13)

where θ ∈ [0◦, 360◦) represents the robot’s direction, [xk yk θk]
T

and [xk+1 yk+1 θk+1]
T represent the robot position before and after

updating, respectively. [dxk+1 dyk+1 dθk+1]T represents the robot
motion increment after the control instructions have been given.
Let Mk = {↑,↓,←,→}, whose elements indicate the action of
moving forward, backward, towards the left and right from the
current position, the motion increment corresponding to Mk can
then be represented as below:⎡⎢⎢⎢⎢⎣

dTf
dTb
dTl
dTr

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

λm 0 0◦

−λm 0 180◦

0 λm 90◦

0 −λm 270◦

⎤⎥⎥⎥⎥⎦ (A.14)

where vectors df , db, dl and dr represents the movement incre-
ment of moving forward, backward, towards the left and right,
respectively, while λm represents the length of the moving step.

The information entropy function employed in this paper is
the classic Shannon entropy, which is generally expressed as
follows:

H(X) = E(− log p(xi)) = −
n∑

i=1

p(xi) log p(xi) (A.15)

Based on the above strategy, the best direction of the mo-
tion corresponding to the maximum entropy can be derived as
follows:

m∗k = arg max {H(mk)} (A.16)

mk∈Mk



H. Zhu, Y. Wang, C. Du et al. / Robotics and Autonomous Systems 132 (2020) 103619 15

w
m
p
p
p
z
p
T

p

{

l
s

p

H(mk) = −
⌊ẑ⌋max∑
ẑk+1=0

p(ẑk+1(p̂k+1)|Z1:k) log p(ẑk+1(p̂k+1)|Z1:k) (A.17)

here mk ∈ Mk, Z1:k = {z1(p1), . . . , zk(pk)} indicates the sensor
easurement so far collected by moving from the track planning
oint p1 to pk, p̂k+1 represents the next alternative planning
oint, ẑk+1(p̂k+1) indicates the expected sensor readout at the next
osition p̂k+1 after executing mk. Although the actual value of
ˆk+1(p̂k+1) is unknown, it can still be approximated by the current
osterior probability distribution obtained by particle filtering.
he derivation based on the full probability formula is as follows:

(ẑk+1(p̂k+1)|Z1:k) ≈
∫

p(ẑk+1(p̂k+1)|Γs,k)p(Γs,k|Z1:k)dΓs,k (A.18)

Posterior probability distribution can be approximated with
Γ

(i)
s,k, ω

(i)
k }

N
i=1, and then p(ẑk+1(p̂k+1)|Γs,k) is the corresponding

ikelihood probability in Eq. (A.6) while p(Γs,k|Z1:k) is the corre-
ponding normalized particle weight. We can get Eq. (A.19).

(ẑk+1(p̂k+1)|Z1:k) ≈
N∑
i=1

[C(p̂k+1, Γ
(i)
s,k)]

⌊ẑk+1(p̂k+1)⌋

⌊ẑk+1(p̂k+1)⌋!

× exp[−C(p̂k+1, Γ
(i)
s,k)]ω

(i)
k (A.19)

Then, H(mk) in Eq. (A.16) can be calculated, with mk that
corresponding to the maximum H(mk) as the next target point.

Appendix B. Variable residual parameter determination based
on Monte-Carlo

There is a dimension disaster problem in particle filter, that
is, the particle estimation accuracy decreases with the increase of
the dimension. We can introduce a large number of particles to
ensure the performance of the algorithm, but too many particles
will also lead to the degradation of the computational perfor-
mance. Therefore, the particle dimension should be reduced as
much as possible and the initial parameter interval should be
narrowed. In this paper, in order to improve the performance
of particle filter, we use integrated sensors directly measure the
information of wind direction ϕs and wind speed vs. There are
three remaining unknown parameters in Eq. (2) in the body of the
paper in addition to the gas source location and the robot location
parameter, namely, gas release rate rs, effective diffusivity Ds and
gas particle lifetime τs, which can usually give a more accurate
prior distribution according to the dangerous gas information of
the actual environment [30]. However, it is difficult to directly
determine those values in the experimental environment of this
paper. Thus, a monte-carlo-based variable residual parameter de-
termination algorithm is proposed to determine the initial value
interval of unknown parameters as the prior information of the
experiment.

During the experiment, we first collect the gas concentration
distribution curve at specified position in the gas field, as shown
in Fig. B.21. Where, the blue curve is the concentration curve,
the red line represents the mean of the concentration, and the
abscissa is the number of collection. Here, the sampling interval
is set as 0.3 s and the number of sampling is 200. Then, each figure
represents the change of concentration in the corresponding sam-
pling position within 1min, and the ordinate is the concentration
data in mg/m3. The robot positions, mean value of concentration
and concentration change interval corresponding to each curve
are shown in Table B.4.

In Table B.4, all other parameters are the same except for
the position of the robot. The gas source position x is set as
s
−1, ys is 0, the wind speed near the gas source vs is measured
by the sensor as 2.0 m/s, the wind direction ϕs is 0◦ in the
initial robot coordinate system, and 180◦ in the world coordinate
system corresponding to the gas concentration distribution map.

The concentration residual formula is defined as formula (B.1)
after obtaining part of parameters and the corresponding mean
value of gas concentration.

∆c ij = |C(r is,D
i
s, τ

i
s)− c jz | (B.1)

where, ∆c ij is the residual of concentration, which represents
the absolute value of the difference between the mean value
calculated based on gas diffusion equation and the mean value
observed by the sensor. C(x) corresponds to Eq. (5), with gas
release rate rs, effective diffusivity Ds and gas particle life τs as
input parameters and i represents the particle number. c jz is the
mean value observed by the sensor and j represents the sampling
position that corresponds to Table B.4.

The core idea of the variable residual parameter determination
based on the monte carlo is to use particles to simulate a large
number of candidate parameters and then screen a small number
of particles that meet the constraint conditions by continuously
strengthening the constraint on residual of concentration. We
set r is ∈ U(100, 1000), Di

s ∈ U(0.01, 3.0) and τ i
s ∈ U(0.1, 5.0),

which means that r is, D
i
s, and τ i

s are sampled from the uniform
distribution of the corresponding interval respectively, with a
large interval in the initial stage. We let initial particle number
n0 = 1.0 × 107, initial concentration residual constraint ∆c0 =
100, initial step size s0 = 10 and threshold value s0 = 10. We use
t to represent the number of iterations, and nt to represent the
number of particles at the number of iterations t .

For each sampling position j, the algorithm traverses all par-
ticles and calculates each ∆c ij according to Eq. (B.1). If ∆c ij ≤
∆ct , the particle is retained and move to the next position to
continue screening, otherwise the particle is discarded. When
all sampling positions are traversed once, it is proved that all
currently retained particles satisfy ∆c i ≤ ∆ct at all sampling
positions. At this time, the constraint condition is enhanced as
∆ct+1 = ∆ct − st to continue to traverse all sampling positions
with all remaining particles. When the number of particles re-
tained satisfies 0 < nt ≤ nth, the iteration ends, otherwise,
repeat the above process. However, the constraint is continuously
enhanced and there will be over-constraining with the progress
of iteration, which causes the number of particles to suddenly
drop to 0. In this case, we should trace back the particle state
and residual before the number of particles becomes 0 and reduce
the step size. In this paper, we set the step length st+1 = 0.1× st
and then continue to iterate. At the end of iteration, the residual
value is the minimum residual constraint that all remaining par-
ticles meet, namely the fitting error of concentration value. And
now the relevant parameters satisfying the minimum residual
constraint can be estimated according to the remaining particles.

The data changes in the iterative process of the algorithm are
shown in Fig. B.22 and the number of iterations is 119. Fig. B.22a
indicates that the value of residual constraint changes as the
number of iterations increases, and ∆C119 = 22.97 at the end of
the iteration. The change of particle number in the iterative pro-
cess is shown as Fig. B.22b. The ordinate is expressed by logarithm
since the number of particles varies greatly and the number of
particles is 0 when over-constraining. And the number of particles
is n119 = 4 at the end of the iteration. The step size variation in
the iteration is represented by lg(s) as shown in Fig. B.22c. The
maximum step size and the minimum step size are 10 and 0.01
respectively. There were three times of over-constraining in the
iterative process according to Fig. B.22, corresponding to t = 52,
t = 98 and t = 102. At the end of the iteration, the parameter
values and mean values of the remaining particles are shown in
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Fig. B.21. Concentration distribution curve.
Fig. B.22. Data curve during iteration.
Table B.4
Position parameters and mean value of concentration curve.
Sequence a b c d e f

x (m) −0.5 −0.1 0.3 1.6 0.3 1.6
y (m) 0 0.8 0.1 0 −1.5 −1.5
Mean value (mg/m3) 126.620 11.420 65.125 45.915 22.025 29.430
Change interval (mg/m3) [110,170] [10,12] [51,79] [40,50] [20,24] [27,34]
Table B.5
Estimated results.
Parameters Sequence Mean

1 2 3 4

rs 475.909 457.515 455.147 446.972 458.886
Ds 0.492 0.473 0.471 0.462 0.475
τs 4.983 4.983 4.995 5.000 4.990

Table B.5, and the mean values is rs = 458.886, Ds = 0.475 and
τs = 4.990. Drawing gas concentration distribution map based
on the above mean value, as shown in Fig. B.23, in which each
sampling position is marked. By comparing the concentration in
the above figure with the mean concentration measured by the
sensor in Table B.5, it can be seen that the estimated parameters
 τ
can make the gas distribution field better fit the measured data
of the sensor.

As can be seen from Fig. B.23, during the experiment, the
plume has a great discontinuity and fluctuation, and the turbu-
lence effect is obvious. The closer to the gas source, the greater
the fluctuation of gas concentration, and the smaller the gas con-
centration gradient when away from the gas source. At the same
time, we cannot accurately measure the concentration at the
specified location because the sensor has a certain measurement
error. Therefore, according to the variable residual parameter
determination algorithm based on monte carlo, the estimated
parameter value cannot be directly determined as the accurate
parameter, but a reasonable initial value interval can be estimated
according to the obtained mean value. Finally, the parameters
prior information are r is ∼ U(350, 700), Di

s ∼ U(0.4, 0.8) and
i
∼ U(3.5, 5.0).
s
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Fig. B.23. Data curve during Iteration.
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